Bibliography
Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Abdulrahman Alfozan,
and James Y. Zou. 2019. Gradio: Hassle-free sharing and
testing of ML models in the wild. ArXiv,
abs/1906.02569.
Samira Abnar and Willem Zuidema. 2020. Quantifying
attention flow in transformers. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault, editors, Proceedings of the 58th
annual meeting of the association for computational linguistics,
pages 4190–4197, Online. Association for Computational Linguistics.
Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer,
Aakriti Jain, Thomas Wiegand, Sebastian Lapuschkin, and Wojciech Samek.
2024. AttnLRP: Attention-aware layer-wise relevance propagation for
transformers. In Proceedings of the 41st international conference on
machine learning, Vienna, Austria. JMLR.org.
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz
Hardt, and Been Kim. 2018. Sanity
checks for saliency maps. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
neural information processing systems, volume 31, pages 9505–9515,
Montréal, Canada. Curran Associates, Inc.
Julius Adebayo, Michael Muelly, Harold Abelson, and Been Kim. 2022. Post hoc explanations
may be ineffective for detecting unknown spurious correlation. In
International conference on learning representations.
Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. 2020.
Debugging tests for model explanations. In Proceedings of the 34th
international conference on neural information processing systems,
Red Hook, NY, USA. Curran Associates Inc.
Chirag Agarwal, Sree Harsha Tanneru, and Himabindu Lakkaraju. 2024. Faithfulness vs. Plausibility:
On the (un)reliability of explanations from large language models.
Arxiv.
Sweta Agrawal, António Farinhas, Ricardo Rei, and Andre Martins. 2024.
Can automatic
metrics assess high-quality translations? In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024
conference on empirical methods in natural language processing,
pages 14491–14502, Miami, Florida, USA. Association for Computational
Linguistics.
Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2023. In-context
examples selection for machine translation. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the
association for computational linguistics: ACL 2023, pages
8857–8873, Toronto, Canada. Association for Computational Linguistics.
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual
neural machine translation. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 conference of the
north American chapter of the association for computational
linguistics: Human language technologies, volume 1 (long and short
papers), pages 3874–3884, Minneapolis, Minnesota. Association for
Computational Linguistics.
Arafat Ahsan, Vandan Mujadia, and Dipti Misra Sharma. 2021. Assessing post-editing
effort in the English-Hindi direction. In
Sivaji Bandyopadhyay, Sobha Lalitha Devi, and Pushpak Bhattacharyya,
editors, Proceedings of the 18th international conference on natural
language processing (ICON), pages 44–53, National Institute of
Technology Silchar, Silchar, India. NLP Association of India (NLPAI).
J Alammar. 2021. Ecco: An open source
library for the explainability of transformer language models. In
Heng Ji, Jong C. Park, and Rui Xia, editors, Proceedings of the 59th
annual meeting of the association for computational linguistics and the
11th international joint conference on natural language processing:
System demonstrations, pages 249–257, Online. Association for
Computational Linguistics.
Simone Alghisi, Massimo Rizzoli, Gabriel Roccabruna, Seyed Mahed
Mousavi, and Giuseppe Riccardi. 2024. Should we fine-tune
or RAG? Evaluating different techniques to adapt
LLMs for dialogue. In Saad Mahamood, Nguyen Le Minh,
and Daphne Ippolito, editors, Proceedings of the 17th international
natural language generation conference, pages 180–197, Tokyo,
Japan. Association for Computational Linguistics.
Duarte Miguel Alves, José Pombal, Nuno M Guerreiro, Pedro Henrique
Martins, João Alves, Amin Farajian, Ben Peters, Ricardo Rei, Patrick
Fernandes, Sweta Agrawal, Pierre Colombo, José G. C. de Souza, and Andre
Martins. 2024. Tower: An open
multilingual large language model for translation-related tasks. In
First conference on language modeling.
Chantal Amrhein, Nikita Moghe, and Liane Guillou. 2022. ACES:
Translation accuracy challenge sets for evaluating machine translation
metrics. In Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi
Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman
Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Tom Kocmi, André Martins, Makoto Morishita, et al., editors,
Proceedings of the seventh conference on machine translation
(WMT), pages 479–513, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.
Chantal Amrhein, Nikita Moghe, and Liane Guillou. 2023. ACES:
Translation accuracy challenge sets at WMT 2023. In
Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors,
Proceedings of the eighth conference on machine translation,
pages 695–712, Singapore. Association for Computational Linguistics.
Chantal Amrhein and Rico Sennrich. 2021. How suitable
are subword segmentation strategies for translating non-concatenative
morphology? In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih, editors, Findings of the association for
computational linguistics: EMNLP 2021, pages 689–705, Punta Cana,
Dominican Republic. Association for Computational Linguistics.
Chantal Amrhein and Rico Sennrich. 2022. Identifying
weaknesses in machine translation metrics through minimum
Bayes risk decoding: A case study for
COMET. In Yulan He, Heng Ji, Sujian Li, Yang Liu, and
Chua-Hui Chang, editors, Proceedings of the 2nd conference of the
asia-pacific chapter of the association for computational linguistics
and the 12th international joint conference on natural language
processing (volume 1: Long papers), pages 1125–1141, Online only.
Association for Computational Linguistics.
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2
technical report. Arxiv.
Dana Arad, Yonatan Belinkov, Hanjie Chen, Najoung Kim, Hosein Mohebbi,
Aaron Mueller, Gabriele Sarti, and Martin Tutek. 2025. Findings of the
BlackboxNLP 2025 shared task: Localizing
circuits and causal variables in language models. In Proceedings
of the 8th BlackboxNLP workshop: Analyzing and interpreting neural
networks for NLP, pages 543–552, Suzhou, China. Association for
Computational Linguistics.
Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery,
Wes Gurnee, and Neel Nanda. 2024. Refusal
in language models is mediated by a single direction. In A.
Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C.
Zhang, editors, Advances in neural information processing
systems, volume 37, pages 136037–136083, Red Hook, NY, USA. Curran
Associates, Inc.
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski.
2018. Linear algebraic
structure of word senses, with applications to polysemy.
Transactions of the Association for Computational Linguistics,
6:483–495.
Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz,
Hangyu Lin, Bharat Venkitesh, Madeline Smith, Jon Ander Campos, Yi Chern
Tan, Kelly Marchisio, Max Bartolo, Sebastian Ruder, Acyr Locatelli,
Julia Kreutzer, Nick Frosst, Aidan Gomez, Phil Blunsom, Marzieh Fadaee,
et al. 2024. Aya 23: Open
weight releases to further multilingual progress.
Akari Asai, Xinyan Yu, Jungo Kasai, and Hanna Hajishirzi. 2021. One
question answering model for many languages with cross-lingual dense
passage retrieval. Advances in Neural Information Processing
Systems, 34:7547–7560.
Pepa Atanasova, Oana-Maria Camburu, Christina Lioma, Thomas Lukasiewicz,
Jakob Grue Simonsen, and Isabelle Augenstein. 2023. Faithfulness tests
for natural language explanations. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st
annual meeting of the association for computational linguistics (volume
2: Short papers), pages 283–294, Toronto, Canada. Association for
Computational Linguistics.
Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle
Augenstein. 2020. A diagnostic
study of explainability techniques for text classification. In
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors,
Proceedings of the 2020 conference on empirical methods in natural
language processing (EMNLP), pages 3256–3274, Online. Association
for Computational Linguistics.
Giuseppe Attanasio, Eliana Pastor, Chiara Di Bonaventura, and Debora
Nozza. 2023. Ferret: A framework
for benchmarking explainers on transformers. In Danilo Croce and
Luca Soldaini, editors, Proceedings of the 17th conference of the
european chapter of the association for computational linguistics:
System demonstrations, pages 256–266, Dubrovnik, Croatia.
Association for Computational Linguistics.
Wilker Aziz, Sheila Castilho, and Lucia Specia. 2012. PET: A tool for
post-editing and assessing machine translation. In Nicoletta
Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the eighth international
conference on language resources and evaluation
(LREC‘12), pages 3982–3987, Istanbul, Turkey. European
Language Resources Association (ELRA).
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization.
Arxiv Preprint.
Joris Baan, Nico Daheim, Evgenia Ilia, Dennis Ulmer, Haau-Sing Li,
Raquel Fernández, Barbara Plank, Rico Sennrich, Chrysoula Zerva, and
Wilker Aziz. 2023. Uncertainty in natural language
generation: From theory to applications.
Alexander AND Montavon Bach Sebastian AND Binder. 2015. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE, 10(7):1–46.
David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe,
Katja Hansen, and Klaus-Robert Müller. 2010. How to explain
individual classification decisions. J. Mach. Learn. Res.,
11:1803–1831.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Yoshua Bengio and Yann
LeCun, editors, Proceedings of the 3rd international conference on
learning representations (ICLR), San Diego, CA, USA.
Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. 2021. Deep
learning through the lens of example difficulty. In M. Ranzato, A.
Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors,
Advances in neural information processing systems, volume 34,
pages 10876–10889. Curran Associates, Inc.
Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An
automatic metric for MT evaluation with improved
correlation with human judgments. In Jade Goldstein, Alon Lavie,
Chin-Yew Lin, and Clare Voss, editors, Proceedings of the
ACL workshop on intrinsic and extrinsic evaluation measures
for machine translation and/or summarization, pages 65–72, Ann
Arbor, Michigan. Association for Computational Linguistics.
Fazl Barez, Tingchen Fu, Ameya Prabhu, Stephen Casper, Amartya Sanyal,
Adel Bibi, Aidan O’Gara, Robert Kirk, Ben Bucknall, Tim Fist, Luke Ong,
Philip Torr, Kwok-Yan Lam, Robert Trager, David Krueger, Sören
Mindermann, José Hernandez-Orallo, Mor Geva, and Yarin Gal. 2025. Open problems in machine
unlearning for AI safety.
Loic Barrault, Ondrej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R.
Costa-jussa, Christian Federmann, Mark Fishel, Alexander Fraser, Markus
Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi, Andre
Martins, Makoto Morishita, et al., editors. 2021. Proceedings of the sixth
conference on machine translation. Association for
Computational Linguistics, Online.
Jasmijn Bastings, Sebastian Ebert, Polina Zablotskaia, Anders Sandholm,
and Katja Filippova. 2022. “Will
you find these shortcuts?” A protocol for evaluating the
faithfulness of input salience methods for text classification. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors,
Proceedings of the 2022 conference on empirical methods in natural
language processing, pages 976–991, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.
Jasmijn Bastings and Katja Filippova. 2020. The elephant in
the interpretability room: Why use attention as explanation when we have
saliency methods? In Afra Alishahi, Yonatan Belinkov, Grzegorz
Chrupała, Dieuwke Hupkes, Yuval Pinter, and Hassan Sajjad, editors,
Proceedings of the third BlackboxNLP workshop on analyzing and
interpreting neural networks for NLP, pages 149–155, Online.
Association for Computational Linguistics.
Rachel Bawden and Benoît Sagot. 2023. RoCS-MT:
Robustness challenge set for machine translation. In Philipp Koehn,
Barry Haddow, Tom Kocmi, and Christof Monz, editors, Proceedings of
the eighth conference on machine translation, pages 198–216,
Singapore. Association for Computational Linguistics.
Rachel Bawden, Rico Sennrich, Alexandra Birch, and Barry Haddow. 2018.
Evaluating discourse
phenomena in neural machine translation. In Marilyn Walker, Heng Ji,
and Amanda Stent, editors, Proceedings of the 2018 conference of the
north American chapter of the association for computational
linguistics: Human language technologies, volume 1 (long papers),
pages 1304–1313, New Orleans, Louisiana. Association for Computational
Linguistics.
Yonatan Belinkov. 2022. Probing classifiers:
Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219.
Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James
Glass. 2017. What do
neural machine translation models learn about morphology? In Regina
Barzilay and Min-Yen Kan, editors, Proceedings of the 55th annual
meeting of the association for computational linguistics (volume 1: Long
papers), pages 861–872, Vancouver, Canada. Association for
Computational Linguistics.
Yonatan Belinkov and James Glass. 2019. Analysis methods in neural
language processing: A survey. Transactions of the Association
for Computational Linguistics, 7:49–72.
Yonatan Belinkov, Aaron Mueller, Najoung Kim, Hosein Mohebbi, Hanjie
Chen, Dana Arad, and Gabriele Sarti, editors. 2025. Proceedings of
the 8th BlackboxNLP workshop: Analyzing and interpreting neural networks
for NLP. Association for Computational Linguistics, Suzhou,
China.
Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky,
Lev McKinney, Stella Biderman, and Jacob Steinhardt. 2023. Eliciting latent predictions
from transformers with the tuned lens. ArXiv,
abs/2303.08112.
Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and Marcello Federico.
2016. Neural versus
phrase-based machine translation quality: A case study. In Jian Su,
Kevin Duh, and Xavier Carreras, editors, Proceedings of the 2016
conference on empirical methods in natural language processing,
pages 257–267, Austin, Texas. Association for Computational Linguistics.
Nathaniel Berger, Stefan Riezler, Miriam Exel, and Matthias Huck. 2024.
Post-edits are
preferences too. In Barry Haddow, Tom Kocmi, Philipp Koehn, and
Christof Monz, editors, Proceedings of the ninth conference on
machine translation, pages 1289–1300, Miami, Florida, USA.
Association for Computational Linguistics.
Federico Bianchi, Giuseppe Attanasio, Raphael Pisoni, Silvia Terragni,
Gabriele Sarti, and Dario Balestri. 2023. Contrastive
language–image pre-training for the Italian
language. In Federico Boschetti, Gianluca E. Lebani, Bernardo
Magnini, and Nicole Novielli, editors, Proceedings of the 9th
italian conference on computational linguistics (CLiC-it 2023),
pages 78–85, Venice, Italy. CEUR Workshop Proceedings.
BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra
Luccioni, François Yvon, et al. 2022. BLOOM: A
176B-parameter open-access multilingual language model.
Arxiv.
Blair Bilodeau, Natasha Jaques, Pang Wei Koh, and Been Kim. 2024. Impossibility theorems
for feature attribution. Proceedings of the National Academy of
Sciences, 121(2):e2304406120.
Alexandra Birch, Miles Osborne, and Philipp Koehn. 2008. Predicting success in machine
translation. In Mirella Lapata and Hwee Tou Ng, editors,
Proceedings of the 2008 conference on empirical methods in natural
language processing, pages 745–754, Honolulu, Hawaii. Association
for Computational Linguistics.
Arianna Bisazza, Ahmet Üstün, and Stephan Sportel. 2021. On the difficulty of
translating free-order case-marking languages. Transactions of
the Association for Computational Linguistics, 9:1233–1248.
Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Purohit, Laria Reynolds,
Jonathan Tow, Ben Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B:
An open-source autoregressive language model. In Angela Fan, Suzana
Ilic, Thomas Wolf, and Matthias Gallé, editors, Proceedings of
BigScience episode #5 – workshop on challenges
& perspectives in creating large language models,
pages 95–136, virtual+Dublin. Association for Computational Linguistics.
Frederic Blain, Chrysoula Zerva, Ricardo Rei, Nuno M. Guerreiro, Diptesh
Kanojia, José G. C. de Souza, Beatriz Silva, Tânia Vaz, Yan Jingxuan,
Fatemeh Azadi, Constantin Orasan, and André Martins. 2023. Findings of the
WMT 2023 shared task on quality estimation. In Philipp
Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors,
Proceedings of the eighth conference on machine translation,
pages 629–653, Singapore. Association for Computational Linguistics.
John Blatz, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril
Goutte, Alex Kulesza, Alberto Sanchis, and Nicola Ueffing. 2004. Confidence estimation for
machine translation. In COLING 2004: Proceedings of
the 20th international conference on computational linguistics,
pages 315–321, Geneva, Switzerland. COLING.
Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020.
Language
(technology) is power: A critical survey of
“bias” in NLP. In Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors,
Proceedings of the 58th annual meeting of the association for
computational linguistics, pages 5454–5476, Online. Association for
Computational Linguistics.
Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni, Daniel Andor, Livio
Baldini Soares, Jacob Eisenstein, Kuzman Ganchev, Jonathan Herzig, Kai
Hui, Tom Kwiatkowski, Ji Ma, Jianmo Ni, Tal Schuster, William W. Cohen,
Michael Collins, Dipanjan Das, Donald Metzler, Slav Petrov, et al. 2022.
Attributed question
answering: Evaluation and modeling for attributed large language
models. ArXiv.
Ondřej Bojar, Christian Buck, Chris Callison-Burch, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013
Workshop on Statistical Machine
Translation. In Ondrej Bojar, Christian Buck, Chris
Callison-Burch, Barry Haddow, Philipp Koehn, Christof Monz, Matt Post,
Herve Saint-Amand, Radu Soricut, and Lucia Specia, editors,
Proceedings of the eighth workshop on statistical machine
translation, pages 1–44, Sofia, Bulgaria. Association for
Computational Linguistics.
Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham,
Barry Haddow, Shujian Huang, Matthias Huck, Philipp Koehn, Qun Liu,
Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Raphael
Rubino, Lucia Specia, and Marco Turchi. 2017. Findings of the 2017
conference on machine translation (WMT17). In Ondřej
Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Yvette
Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, and Julia Kreutzer, editors, Proceedings of the second
conference on machine translation, pages 169–214, Copenhagen,
Denmark. Association for Computational Linguistics.
Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza
Rutherford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, Diego De Las Casas, Aurelia Guy,
Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore,
Chris Jones, Albin Cassirer, et al. 2022. Improving
language models by retrieving from trillions of tokens. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th international
conference on machine learning, volume 162, pages 2206–2240. PMLR.
Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Maksim Riabinin,
Younes Belkada, Artem Chumachenko, Pavel Samygin, and Colin Raffel.
2023. Petals:
Collaborative inference and fine-tuning of large models. In Danushka
Bollegala, Ruihong Huang, and Alan Ritter, editors, Proceedings of
the 61st annual meeting of the association for computational linguistics
(volume 3: System demonstrations), pages 558–568, Toronto, Canada.
Association for Computational Linguistics.
Lynne Bowker. 2002. Computer-aided
translation technology: A practical introduction. University of
Ottawa Press.
Eleftheria Briakou, Di Lu, Ke Zhang, and Joel Tetreault. 2021. Olá,
bonjour, salve! XFORMAL: A benchmark for multilingual
formality style transfer. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan
Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors, Proceedings
of the 2021 conference of the north american chapter of the association
for computational linguistics: Human language technologies, pages
3199–3216, Online. Association for Computational Linguistics.
Eleftheria Briakou, Jiaming Luo, Colin Cherry, and Markus Freitag. 2024.
Translating
step-by-step: Decomposing the translation process for improved
translation quality of long-form texts. In Barry Haddow, Tom Kocmi,
Philipp Koehn, and Christof Monz, editors, Proceedings of the ninth
conference on machine translation, pages 1301–1317, Miami, Florida,
USA. Association for Computational Linguistics.
Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn,
Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell,
Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, et al.
2023. Towards
monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread.
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, et al. 2020. Language models are few-shot learners. In
Proceedings of the 34th international conference on neural
information processing systems, Red Hook, NY, USA. Curran
Associates Inc.
Emanuele Bugliarello, Sabrina J. Mielke, Antonios Anastasopoulos, Ryan
Cotterell, and Naoaki Okazaki. 2020. It‘s easier to
translate out of English than into it:
Measuring neural translation difficulty by cross-mutual
information. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th annual meeting of the
association for computational linguistics, pages 1640–1649, Online.
Association for Computational Linguistics.
Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived
automatically from language corpora contain human-like biases.
Science, 356(6334):183–186.
Chris Callison-Burch, Cameron Fordyce, Philipp Koehn, Christof Monz, and
Josh Schroeder. 2007. (Meta-) evaluation of machine
translation. In Chris Callison-Burch, Philipp Koehn, Cameron Shaw
Fordyce, and Christof Monz, editors, Proceedings of the second
workshop on statistical machine translation, pages 136–158, Prague,
Czech Republic. Association for Computational Linguistics.
Sara Candussio, Gaia Saveri, Gabriele Sarti, and Luca Bortolussi. 2025.
Bridging logic and
learning: Decoding temporal logic embeddings via transformers. In
Machine learning and knowledge discovery in databases. Research
track. Springer Nature Switzerland.
Stephen Casper, Carson Ezell, Charlotte Siegmann, Noam Kolt, Taylor Lynn
Curtis, Benjamin Bucknall, Andreas Haupt, Kevin Wei, Jérémy Scheurer,
Marius Hobbhahn, Lee Sharkey, Satyapriya Krishna, Marvin Von Hagen,
Silas Alberti, Alan Chan, Qinyi Sun, Michael Gerovitch, David Bau, Max
Tegmark, et al. 2024. Black-box access is
insufficient for rigorous AI audits. In Proceedings of the 2024
ACM conference on fairness, accountability, and transparency, pages
2254–2272, New York, NY, USA. Association for Computing Machinery.
Sheila Castilho, Joss Moorkens, Federico Gaspari, Iacer Calixto, John
Tinsley, and Andy Way. 2017. Is neural machine
translation the new state of the art? The Prague Bulletin of
Mathematical Linguistics, 108(1):109–120.
Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan Niehues,
Sebastian Stüker, Katsuhito Sudoh, Koichiro Yoshino, and Christian
Federmann. 2017. Overview of the
IWSLT 2017 evaluation campaign. In Sakriani Sakti and
Masao Utiyama, editors, Proceedings of the 14th international
conference on spoken language translation, pages 2–14, Tokyo,
Japan. International Workshop on Spoken Language Translation.
Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. 2024. Improving steering vectors by
targeting sparse autoencoder features. Arxiv.
Yangyi Chen, Lifan Yuan, Ganqu Cui, Zhiyuan Liu, and Heng Ji. 2023. A close look into
the calibration of pre-trained language models. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the
61st annual meeting of the association for computational linguistics
(volume 1: Long papers), pages 1343–1367, Toronto, Canada.
Association for Computational Linguistics.
Won Ik Cho, Ji Won Kim, Seok Min Kim, and Nam Soo Kim. 2019. On measuring gender bias in
translation of gender-neutral pronouns. In Marta R. Costa-jussà,
Christian Hardmeier, Will Radford, and Kellie Webster, editors,
Proceedings of the first workshop on gender bias in natural language
processing, pages 173–181, Florence, Italy. Association for
Computational Linguistics.
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer,
Vinodkumar Prabhakaran, et al. 2023. PaLM: Scaling language
modeling with pathways. Journal of Machine Learning
Research, 24(240):1–113.
George Chrysostomou and Nikolaos Aletras. 2022. An empirical study
on explanations in out-of-domain settings. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the
60th annual meeting of the association for computational linguistics
(volume 1: Long papers), pages 6920–6938, Dublin, Ireland.
Association for Computational Linguistics.
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma,
Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, et
al. 2024. Scaling
instruction-finetuned language models. Journal of Machine
Learning Research, 25(70):1–53.
Kenneth W. Church and Eduard H. Hovy. 1993. Good applications for crummy
machine translation. Machine Translation, 8(4):239–258.
Cristiano Ciaccio, Gabriele Sarti, Alessio Miaschi, and Felice
Dell’Orletta. 2025. Crossword
space: Latent manifold learning for italian crosswords and beyond.
In Cristina Bosco, Elisabetta Jezek, Marco Polignano, and Manuela
Sanguinetti, editors, Proceedings of the 11th italian conference on
computational linguistics (CLiC-it 2023), Cagliari, Italy. CEUR
Workshop Proceedings.
Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning.
2019. What does
BERT look at? An analysis of BERT‘s
attention. In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and
Dieuwke Hupkes, editors, Proceedings of the 2019 ACL workshop
BlackboxNLP: Analyzing and interpreting neural networks for NLP,
pages 276–286, Florence, Italy. Association for Computational
Linguistics.
Benjamin Cohen-Wang, Harshay Shah, Kristian Georgiev, and Aleksander
Mądry. 2024. ContextCite:
Attributing model generation to context. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors,
Advances in neural information processing systems, volume 37,
pages 95764–95807. Curran Associates, Inc.
Çağrı Çöltekin and Taraka Rama. 2023. What do complexity
measures measure? Correlating and validating corpus-based measures of
morphological complexity. Linguistics Vanguard,
9(s1):27–43.
Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault, editors,
Proceedings of the 58th annual meeting of the association for
computational linguistics, pages 8440–8451, Online. Association for
Computational Linguistics.
Alexis Conneau and Guillaume Lample. 2019. Cross-lingual
language model pretraining. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, editors,
Advances in neural information processing systems, volume 32.
Curran Associates, Inc.
Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel
Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI:
Evaluating cross-lingual sentence representations. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 conference on empirical methods in natural
language processing, pages 2475–2485, Brussels, Belgium.
Association for Computational Linguistics.
Sven Coppers, Jan Van den Bergh, Kris Luyten, Karin Coninx, Iulianna Van
der Lek-Ciudin, Tom Vanallemeersch, and Vincent Vandeghinste. 2018. Intellingo:
An intelligible translation environment. In
Proceedings of the 2018 CHI conference on human factors in computing
systems, pages 1–13.
Ryan Cotterell, Sabrina J. Mielke, Jason Eisner, and Brian Roark. 2018.
Are all languages equally
hard to language-model? In Marilyn Walker, Heng Ji, and Amanda
Stent, editors, Proceedings of the 2018 conference of the north
American chapter of the association for computational
linguistics: Human language technologies, volume 2 (short papers),
pages 536–541, New Orleans, Louisiana. Association for Computational
Linguistics.
Ian Covert, Scott Lundberg, and Su-In Lee. 2021. Explaining by removing: A
unified framework for model explanation. Journal of Machine
Learning Research, 22(209):1–90.
Jonathan Crabbé and Mihaela van der Schaar. 2023. Evaluating the
robustness of interpretability methods through explanation invariance
and equivariance. In Thirty-seventh conference on neural
information processing systems.
Menglong Cui, Pengzhi Gao, Wei Liu, Jian Luan, and Bin Wang. 2025. Multilingual
machine translation with open large language models at practical scale:
An empirical study. In Luis Chiruzzo, Alan Ritter, and Lu Wang,
editors, Proceedings of the 2025 conference of the nations of the
americas chapter of the association for computational linguistics: Human
language technologies (volume 1: Long papers), pages 5420–5443,
Albuquerque, New Mexico. Association for Computational Linguistics.
Anna Currey, Maria Nadejde, Raghavendra Reddy Pappagari, Mia Mayer,
Stanislas Lauly, Xing Niu, Benjamin Hsu, and Georgiana Dinu. 2022. MT-GenEval:
A counterfactual and contextual dataset for evaluating gender accuracy
in machine translation. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 conference on empirical
methods in natural language processing, pages 4287–4299, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
Joke Daems, Sonia Vandepitte, Robert J. Hartsuiker, and Lieve Macken.
2017a. Identifying
the machine translation error types with the greatest impact on
post-editing effort. Frontiers in Psychology, 8.
Joke Daems, Sonia Vandepitte, Robert Hartsuiker, and Lieve Macken.
2017b. Translation methods
and experience: A comparative analysis of human translation and
post-editing with students and professional translators. Meta :
journal des traducteurs / Meta: Translators’ Journal,
62(2):245–270.
Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei.
2022. Knowledge
neurons in pretrained transformers. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio, editors, Proceedings of the 60th
annual meeting of the association for computational linguistics (volume
1: Long papers), pages 8493–8502, Dublin, Ireland. Association for
Computational Linguistics.
David Dale, Elena Voita, Loic Barrault, and Marta R. Costa-jussà. 2023a.
Detecting and
mitigating hallucinations in machine translation: Model internal
workings alone do well, sentence similarity Even
better. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st annual meeting of the association
for computational linguistics (volume 1: Long papers), pages 36–50,
Toronto, Canada. Association for Computational Linguistics.
David Dale, Elena Voita, Janice Lam, Prangthip Hansanti, Christophe
Ropers, Elahe Kalbassi, Cynthia Gao, Loic Barrault, and Marta
Costa-jussà. 2023b. HalOmi:
A manually annotated benchmark for multilingual hallucination and
omission detection in machine translation. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 conference
on empirical methods in natural language processing, pages 638–653,
Singapore. Association for Computational Linguistics.
Xuan-Quy Dao and Ngoc-Bich Le. 2023. Chatgpt is good but bing chat is
better for vietnamese students. Arxiv.
Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. GPT3.int8():
8-bit matrix multiplication for transformers at scale. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in neural information processing systems, volume 35,
pages 30318–30332. Curran Associates, Inc.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 conference of the north
American chapter of the association for computational
linguistics: Human language technologies, volume 1 (long and short
papers), pages 4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.
Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming
Xiong, Richard Socher, and Byron C. Wallace. 2020. ERASER:
A benchmark to evaluate rationalized NLP
models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th annual meeting of the
association for computational linguistics, pages 4443–4458, Online.
Association for Computational Linguistics.
Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming
Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang
Sui. 2024. A
survey on in-context learning. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen, editors, Proceedings of the 2024 conference on
empirical methods in natural language processing, pages 1107–1128,
Miami, Florida, USA. Association for Computational Linguistics.
David L. Donoho and Michael Elad. 2003. Optimally sparse
representation in general (nonorthogonal) dictionaries via
ℓ<sup>1</sup> minimization. Proceedings
of the National Academy of Sciences, 100(5):2197–2202.
Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of
interpretable machine learning.
Zi-Yi Dou and Graham Neubig. 2021. Word alignment by
fine-tuning embeddings on parallel corpora. In Paola Merlo, Jorg
Tiedemann, and Reut Tsarfaty, editors, Proceedings of the 16th
conference of the european chapter of the association for computational
linguistics: Main volume, pages 2112–2128, Online. Association for
Computational Linguistics.
Esin Durmus, He He, and Mona Diab. 2020. FEQA:
A question answering evaluation framework for faithfulness assessment in
abstractive summarization. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault, editors, Proceedings of the 58th
annual meeting of the association for computational linguistics,
pages 5055–5070, Online. Association for Computational Linguistics.
Lukas Edman, Gabriele Sarti, Antonio Toral, Gertjan van Noord, and
Arianna Bisazza. 2024. Are character-level
translations worth the wait? Comparing ByT5
and mT5 for machine translation. Transactions of
the Association for Computational Linguistics, 12:392–410.
Upol Ehsan, Q. Vera Liao, Michael Muller, Mark O. Riedl, and Justin D.
Weisz. 2021. Expanding
explainability: Towards social transparency in AI systems. In
Proceedings of the 2021 CHI conference on human factors in computing
systems, New York, NY, USA. Association for Computing Machinery.
Upol Ehsan, Samir Passi, Q. Vera Liao, Larry Chan, I-Hsiang Lee, Michael
Muller, and Mark O Riedl. 2024. The who in XAI: How AI
background shapes perceptions of AI explanations. In Proceedings
of the 2024 CHI conference on human factors in computing systems,
New York, NY, USA. Association for Computing Machinery.
Bryan Eikema and Wilker Aziz. 2020. Is
MAP decoding all you need? The inadequacy of the mode in
neural machine translation. In Donia Scott, Nuria Bel, and Chengqing
Zong, editors, Proceedings of the 28th international conference on
computational linguistics, pages 4506–4520, Barcelona, Spain
(Online). International Committee on Computational Linguistics.
Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom
Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei,
Martin Wattenberg, and Christopher Olah. 2022. Toy
models of superposition. Transformer Circuits Thread.
Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas
Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny
Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, et
al. 2021. A mathematical framework for transformer circuits.
Transformer Circuits Thread.
https://transformer-circuits.pub/2021/framework/index.html.
Joseph Enguehard. 2023. Sequential
integrated gradients: A simple but effective method for explaining
language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Findings of the association for computational
linguistics: ACL 2023, pages 7555–7565, Toronto, Canada.
Association for Computational Linguistics.
Sugyeong Eo, Chanjun Park, Hyeonseok Moon, Jaehyung Seo, and Heuiseok
Lim. 2022. Word-level quality
estimation for korean-english neural machine translation. IEEE
Access, 10:44964–44973.
Johannes Eschbach-Dymanus, Frank Essenberger, Bianka Buschbeck, and
Miriam Exel. 2024. Exploring the
effectiveness of LLM domain adaptation for business
IT machine translation. In Carolina Scarton, Charlotte
Prescott, Chris Bayliss, Chris Oakley, Joanna Wright, Stuart Wrigley,
Xingyi Song, Edward Gow-Smith, Rachel Bawden, Víctor M
Sánchez-Cartagena, Patrick Cadwell, Ekaterina Lapshinova-Koltunski, Vera
Cabarrão, Konstantinos Chatzitheodorou, Mary Nurminen, Diptesh Kanojia,
and Helena Moniz, editors, Proceedings of the 25th annual conference
of the european association for machine translation (volume 1),
pages 610–622, Sheffield, UK. European Association for Machine
Translation (EAMT).
Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem Shelmanov, Sergey
Petrakov, Haonan Li, Hamdy Mubarak, Evgenii Tsymbalov, Gleb Kuzmin,
Alexander Panchenko, Timothy Baldwin, Preslav Nakov, and Maxim Panov.
2024. Fact-checking
the output of large language models via token-level uncertainty
quantification. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Findings of the association for computational linguistics:
ACL 2024, pages 9367–9385, Bangkok, Thailand. Association for
Computational Linguistics.
Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev,
Sergey Petrakov, Kirill Fedyanin, Daniil Vasilev, Elizaveta Goncharova,
Alexander Panchenko, Maxim Panov, Timothy Baldwin, and Artem Shelmanov.
2023. LM-polygraph:
Uncertainty estimation for language models. In Yansong Feng and Els
Lefever, editors, Proceedings of the 2023 conference on empirical
methods in natural language processing: System demonstrations,
pages 446–461, Singapore. Association for Computational Linguistics.
Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky,
Siddharth Goyal, Mandeep Baines, Onur Çelebi, Guillaume Wenzek, Vishrav
Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov,
Edouard Grave, Michael Auli, and Armand Joulin. 2021. Beyond english-centric
multilingual machine translation. Journal of Machine Learning
Research, 22(107):1–48.
Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston,
and Michael Auli. 2019. ELI5: Long form
question answering. In Anna Korhonen, David Traum, and Lluís
Màrquez, editors, Proceedings of the 57th annual meeting of the
association for computational linguistics, pages 3558–3567,
Florence, Italy. Association for Computational Linguistics.
Anna Farkas and Renáta Németh. 2022. How to measure gender
bias in machine translation: Real-world oriented machine translators,
multiple reference points. Social Sciences & Humanities
Open, 5(1):100239.
Marcello Federico, Nicola Bertoldi, Marco Trombetti, and Alessandro
Cattelan. 2014. MateCat:
An open source CAT tool for MT
post-editing. In Proceedings of the 11th conference of the
association for machine translation in the americas: tutorials,
Vancouver, Canada. Association for Machine Translation in the Americas.
Thomas Fel. 2024. Sparks
of explainability: Recent advancements in explaining large vision
models. PhD thesis, University of Toulouse.
Nils Feldhus, Robert Schwarzenberg, and Sebastian Möller. 2021. Thermostat: A
large collection of NLP model explanations and analysis
tools. In Heike Adel and Shuming Shi, editors, Proceedings of
the 2021 conference on empirical methods in natural language processing:
System demonstrations, pages 87–95, Online; Punta Cana, Dominican
Republic. Association for Computational Linguistics.
Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei
Wang. 2022. Language-agnostic
BERT sentence embedding. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio, editors, Proceedings of the 60th
annual meeting of the association for computational linguistics (volume
1: Long papers), pages 878–891, Dublin, Ireland. Association for
Computational Linguistics.
Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez,
and Jordan Boyd-Graber. 2018. Pathologies of neural models
make interpretations difficult. In Ellen Riloff, David Chiang, Julia
Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018
conference on empirical methods in natural language processing,
pages 3719–3728, Brussels, Belgium. Association for Computational
Linguistics.
Patrick Fernandes, Daniel Deutsch, Mara Finkelstein, Parker Riley, André
Martins, Graham Neubig, Ankush Garg, Jonathan Clark, Markus Freitag, and
Orhan Firat. 2023a. The devil is in the
errors: Leveraging large language models for fine-grained machine
translation evaluation. In Philipp Koehn, Barry Haddow, Tom Kocmi,
and Christof Monz, editors, Proceedings of the eighth conference on
machine translation, pages 1066–1083, Singapore. Association for
Computational Linguistics.
Patrick Fernandes, António Farinhas, Ricardo Rei, José G. C. de Souza,
Perez Ogayo, Graham Neubig, and Andre Martins. 2022. Quality-aware
decoding for neural machine translation. In Marine Carpuat,
Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors,
Proceedings of the 2022 conference of the north american chapter of
the association for computational linguistics: Human language
technologies, pages 1396–1412, Seattle, United States. Association
for Computational Linguistics.
Patrick Fernandes, Kayo Yin, Emmy Liu, André Martins, and Graham Neubig.
2023b. When does
translation require context? A data-driven, multilingual
exploration. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st annual meeting of the association
for computational linguistics (volume 1: Long papers), pages
606–626, Toronto, Canada. Association for Computational Linguistics.
Patrick Fernandes, Kayo Yin, Graham Neubig, and André F. T. Martins.
2021. Measuring
and increasing context usage in context-aware machine translation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,
Proceedings of the 59th annual meeting of the association for
computational linguistics and the 11th international joint conference on
natural language processing (volume 1: Long papers), pages
6467–6478, Online. Association for Computational Linguistics.
Javier Ferrando, Gerard I. Gállego, Belen Alastruey, Carlos Escolano,
and Marta R. Costa-jussà. 2022a. Towards opening
the black box of neural machine translation: Source and target
interpretations of the transformer. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of the 2022 conference
on empirical methods in natural language processing, pages
8756–8769, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.
Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-jussà. 2022b. Measuring the
mixing of contextual information in the transformer. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of
the 2022 conference on empirical methods in natural language
processing, pages 8698–8714, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.
Javier Ferrando, Gerard I. Gállego, Ioannis Tsiamas, and Marta R.
Costa-jussà. 2023. Explaining how
transformers use context to build predictions. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the
61st annual meeting of the association for computational linguistics
(volume 1: Long papers), pages 5486–5513, Toronto, Canada.
Association for Computational Linguistics.
Javier Ferrando, Oscar Balcells Obeso, Senthooran Rajamanoharan, and
Neel Nanda. 2025. Do i know this entity?
Knowledge awareness and hallucinations in language models. In
The thirteenth international conference on learning
representations.
Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R.
Costa-jussà. 2024. A primer
on the inner workings of transformer-based language models.
Arxiv Preprint.
Jaden Fried Fiotto-Kaufman, Alexander Russell Loftus, Eric Todd, Jannik
Brinkmann, Koyena Pal, Dmitrii Troitskii, Michael Ripa, Adam Belfki, Can
Rager, Caden Juang, Aaron Mueller, Samuel Marks, Arnab Sen Sharma,
Francesca Lucchetti, Nikhil Prakash, Carla E. Brodley, Arjun Guha,
Jonathan Bell, Byron C Wallace, et al. 2025. NNsight
and NDIF: Democratizing access to open-weight foundation
model internals. In The thirteenth international conference on
learning representations.
Lucie Flekova, Jordan Carpenter, Salvatore Giorgi, Lyle Ungar, and
Daniel Preoţiuc-Pietro. 2016. Analyzing biases in human
perception of user age and gender from text. In Katrin Erk and Noah
A. Smith, editors, Proceedings of the 54th annual meeting of the
association for computational linguistics (volume 1: Long papers),
pages 843–854, Berlin, Germany. Association for Computational
Linguistics.
Marina Fomicheva, Piyawat Lertvittayakumjorn, Wei Zhao, Steffen Eger,
and Yang Gao. 2021. The
Eval4NLP shared task on explainable quality
estimation: Overview and results. In Yang Gao, Steffen Eger, Wei
Zhao, Piyawat Lertvittayakumjorn, and Marina Fomicheva, editors,
Proceedings of the 2nd workshop on evaluation and comparison of NLP
systems, pages 165–178, Punta Cana, Dominican Republic. Association
for Computational Linguistics.
Marina Fomicheva and Lucia Specia. 2019. Taking MT
evaluation metrics to extremes: Beyond correlation with human
judgments. Computational Linguistics, 45(3):515–558.
Marina Fomicheva, Lucia Specia, and Nikolaos Aletras. 2022a. Translation
error detection as rationale extraction. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio, editors, Findings of the
association for computational linguistics: ACL 2022, pages
4148–4159, Dublin, Ireland. Association for Computational Linguistics.
Marina Fomicheva, Shuo Sun, Erick Fonseca, Chrysoula Zerva, Frédéric
Blain, Vishrav Chaudhary, Francisco Guzmán, Nina Lopatina, Lucia Specia,
and André F. T. Martins. 2022b. MLQE-PE:
A multilingual quality estimation and post-editing dataset. In
Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente
Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the thirteenth language resources and
evaluation conference, pages 4963–4974, Marseille, France. European
Language Resources Association.
Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco
Guzmán, Mark Fishel, Nikolaos Aletras, Vishrav Chaudhary, and Lucia
Specia. 2020. Unsupervised quality
estimation for neural machine translation. Transactions of the
Association for Computational Linguistics, 8:539–555.
Markus Freitag, George Foster, David Grangier, Viresh Ratnakar, Qijun
Tan, and Wolfgang Macherey. 2021a. Experts, errors, and
context: A large-scale study of human evaluation for machine
translation. Transactions of the Association for Computational
Linguistics, 9:1460–1474.
Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-Kiu Lo, Eleftherios
Avramidis, Ricardo Rei, Brian Thompson, Frederic Blain, Tom Kocmi, Jiayi
Wang, David Ifeoluwa Adelani, Marianna Buchicchio, Chrysoula Zerva, and
Alon Lavie. 2024. Are
LLMs breaking MT metrics? Results of the
WMT24 metrics shared task. In Barry Haddow, Tom Kocmi,
Philipp Koehn, and Christof Monz, editors, Proceedings of the ninth
conference on machine translation, pages 47–81, Miami, Florida,
USA. Association for Computational Linguistics.
Markus Freitag, Nitika Mathur, Chi-kiu Lo, Eleftherios Avramidis,
Ricardo Rei, Brian Thompson, Tom Kocmi, Frederic Blain, Daniel Deutsch,
Craig Stewart, Chrysoula Zerva, Sheila Castilho, Alon Lavie, and George
Foster. 2023. Results of
WMT23 metrics shared task: Metrics might be guilty but
references are not innocent. In Philipp Koehn, Barry Haddow, Tom
Kocmi, and Christof Monz, editors, Proceedings of the eighth
conference on machine translation, pages 578–628, Singapore.
Association for Computational Linguistics.
Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo, Craig Stewart,
Eleftherios Avramidis, Tom Kocmi, George Foster, Alon Lavie, and André
F. T. Martins. 2022. Results of
WMT22 metrics shared task: Stop using BLEU
– neural metrics are better and more robust. In Philipp
Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee,
Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander
Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman,
Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André
Martins, Makoto Morishita, et al., editors, Proceedings of the
seventh conference on machine translation (WMT), pages 46–68, Abu
Dhabi, United Arab Emirates (Hybrid). Association for Computational
Linguistics.
Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo, Craig Stewart,
George Foster, Alon Lavie, and Ondřej Bojar. 2021b. Results of the
WMT21 metrics shared task: Evaluating metrics with
expert-based human evaluations on TED and news domain.
In Loic Barrault, Ondrej Bojar, Fethi Bougares, Rajen Chatterjee, Marta
R. Costa-jussa, Christian Federmann, Mark Fishel, Alexander Fraser,
Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi,
Andre Martins, Makoto Morishita, et al., editors, Proceedings of the
sixth conference on machine translation, pages 733–774, Online.
Association for Computational Linguistics.
Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncertainty in deep
learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of the 33rd international conference on machine
learning, volume 48, pages 1050–1059, New York, NY, USA.
Proceedings of Machine Learning Research (PLMR).
Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe,
Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima,
Shawn Presser, and Connor Leahy. 2021. The pile: An 800GB dataset of
diverse text for language modeling. Arxiv.
Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. 2023a. Enabling large
language models to generate text with citations. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
conference on empirical methods in natural language processing,
pages 6465–6488, Singapore. Association for Computational Linguistics.
Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, and Haofen Wang. 2023b. Retrieval-augmented generation
for large language models: A survey. ArXiv.
Ignacio Garcia. 2009. Beyond translation
memory: Computers and the professional translator. The Journal
of Specialised Translation.
Xavier Garcia, Noah Constant, Mandy Guo, and Orhan Firat. 2021. Towards universality in
multilingual text rewriting. Arxiv.
Xavier Garcia and Orhan Firat. 2022. Using natural language prompts
for machine translation. Arxiv.
Xiao Ge, Chunchen Xu, Daigo Misaki, Hazel Rose Markus, and Jeanne L
Tsai. 2024. How
culture shapes what people want from AI. In Proceedings of the
2024 CHI conference on human factors in computing systems, New
York, NY, USA. Association for Computing Machinery.
Viveta Gene. 2021. The post-editing
workflow: Training challenges for LSPs, post-editors and
academia. In Ruslan Mitkov, Vilelmini Sosoni, Julie Christine
Giguère, Elena Murgolo, and Elizabeth Deysel, editors, Proceedings
of the translation and interpreting technology online conference,
pages 187–198, Held Online. INCOMA Ltd.
Daniela Gerz, Ivan Vulić, Edoardo Maria Ponti, Roi Reichart, and Anna
Korhonen. 2018. On the
relation between linguistic typology and (limitations of) multilingual
language modeling. In Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii, editors, Proceedings of the 2018 conference on
empirical methods in natural language processing, pages 316–327,
Brussels, Belgium. Association for Computational Linguistics.
Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. 2022. Transformer
feed-forward layers build predictions by promoting concepts in the
vocabulary space. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 conference on empirical
methods in natural language processing, pages 30–45, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer
feed-forward layers are key-value memories. In Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 conference on empirical methods in natural
language processing, pages 5484–5495, Online; Punta Cana, Dominican
Republic. Association for Computational Linguistics.
Mario Giulianelli, Joris Baan, Wilker Aziz, Raquel Fernández, and
Barbara Plank. 2023. What comes next?
Evaluating uncertainty in neural text generators against human
production variability. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 conference on empirical
methods in natural language processing, pages 14349–14371,
Singapore. Association for Computational Linguistics.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
Press.
Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, and Alexis
Conneau. 2021. Larger-scale
transformers for multilingual masked language modeling. In Anna
Rogers, Iacer Calixto, Ivan Vulić, Naomi Saphra, Nora Kassner,
Oana-Maria Camburu, Trapit Bansal, and Vered Shwartz, editors,
Proceedings of the 6th workshop on representation learning for NLP
(RepL4NLP-2021), pages 29–33, Online. Association for Computational
Linguistics.
Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume
Wenzek, Da Ju, Sanjana Krishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The
Flores-101 evaluation benchmark for low-resource and
multilingual machine translation. Transactions of the
Association for Computational Linguistics, 10:522–538.
Tanya Goyal and Greg Durrett. 2021. Annotating and
modeling fine-grained factuality in summarization. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz
Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou, editors, Proceedings of the 2021 conference of the north
american chapter of the association for computational linguistics: Human
language technologies, pages 1449–1462, Online. Association for
Computational Linguistics.
Yvette Graham, Timothy Baldwin, Alistair Moffat, and Justin Zobel. 2013.
Continuous measurement
scales in human evaluation of machine translation. In Antonio
Pareja-Lora, Maria Liakata, and Stefanie Dipper, editors,
Proceedings of the 7th linguistic annotation workshop and
interoperability with discourse, pages 33–41, Sofia, Bulgaria.
Association for Computational Linguistics.
Spence Green, Jeffrey Heer, and Christopher D. Manning. 2013. The efficacy of human
post-editing for language translation. In Proceedings of the
SIGCHI Conference on Human
Factors in Computing
Systems, pages 439–448, New York, NY, USA. Association
for Computing Machinery.
Ana Guerberof. 2009. Productivity and
quality in MT post-editing. In Beyond translation
memories: New tools for translators workshop, Ottawa, Canada.
Ana Guerberof-Arenas and Joss Moorkens. 2023. Ethics and machine
translation: The end user perspective. In Towards responsible
machine translation: Ethical and legal considerations in machine
translation, pages 113–133. Springer International Publishing,
Cham.
Ana Guerberof-Arenas and Antonio Toral. 2022. Creativity in translation:
Machine translation as a constraint for literary texts.
Translation Spaces, 11(2):184–212.
Nuno M. Guerreiro, Pierre Colombo, Pablo Piantanida, and André Martins.
2023a. Optimal
transport for unsupervised hallucination detection in neural machine
translation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st annual meeting of the association
for computational linguistics (volume 1: Long papers), pages
13766–13784, Toronto, Canada. Association for Computational Linguistics.
Nuno M. Guerreiro, Ricardo Rei, Daan van Stigt, Luisa Coheur, Pierre
Colombo, and André F. T. Martins. 2024. Xcomet: Transparent machine
translation evaluation through fine-grained error detection.
Transactions of the Association for Computational Linguistics,
12:979–995.
Nuno M. Guerreiro, Elena Voita, and André Martins. 2023b. Looking for a
needle in a haystack: A comprehensive study of hallucinations in neural
machine translation. In Andreas Vlachos and Isabelle Augenstein,
editors, Proceedings of the 17th conference of the european chapter
of the association for computational linguistics, pages 1059–1075,
Dubrovnik, Croatia. Association for Computational Linguistics.
Abhijeet Gupta, Gemma Boleda, Marco Baroni, and Sebastian Padó. 2015. Distributional vectors
encode referential attributes. In Lluís Màrquez, Chris
Callison-Burch, and Jian Su, editors, Proceedings of the 2015
conference on empirical methods in natural language processing,
pages 12–21, Lisbon, Portugal. Association for Computational
Linguistics.
Christian Hadiwinoto. 2017. Book review: Syntax-based
statistical machine translation by philip Williams, rico
Sennrich, matt post and philipp Koehn.
Computational Linguistics, 43(4):893–896.
Zellig S. Harris. 1954. Distributional
structure. Word, 10(2-3):146–162.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for
image recognition. In 2016 IEEE conference on computer vision
and pattern recognition (CVPR), pages 770–778, Los Alamitos, CA,
USA. IEEE Computer Society.
Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023. DeBERTaV3:
Improving DeBERTa using ELECTRA-style
pre-training with gradient-disentangled embedding sharing. In
Proceedings of the 11th international conference on learning
representations.
Roee Hendel, Mor Geva, and Amir Globerson. 2023. In-context
learning creates task vectors. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Findings of the association for computational
linguistics: EMNLP 2023, pages 9318–9333, Singapore. Association
for Computational Linguistics.
Dan Hendrycks and Kevin Gimpel. 2017. A baseline for detecting
misclassified and out-of-distribution examples in neural networks.
In International conference on learning representations (ICLR
2017).
Dan Hendrycks and Laura Hiscott. 2025. The
misguided quest for mechanistic AI interpretability. Accessed August
4, 2025.
Nico Herbig, Tim Düwel, Santanu Pal, Kalliopi Meladaki, Mahsa
Monshizadeh, Antonio Krüger, and Josef van Genabith. 2020. MMPE:
A Multi-Modal
Interface for Post-Editing
Machine Translation. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault, editors,
Proceedings of the 58th annual meeting of the association for
computational linguistics, pages 1691–1702, Online. Association for
Computational Linguistics.
Anas Himmi, Guillaume Staerman, Marine Picot, Pierre Colombo, and Nuno M
Guerreiro. 2024. Enhanced
hallucination detection in neural machine translation through simple
detector aggregation. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen, editors, Proceedings of the 2024 conference on
empirical methods in natural language processing, pages
18573–18583, Miami, Florida, USA. Association for Computational
Linguistics.
Sepp Hochreiter. 1998. The vanishing gradient
problem during learning recurrent neural nets and problem solutions.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 6(2):107–116.
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.
Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke
Zettlemoyer. 2021. Surface form
competition: Why the highest probability answer isn‘t always right.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih, editors, Proceedings of the 2021 conference on empirical
methods in natural language processing, pages 7038–7051, Online;
Punta Cana, Dominican Republic. Association for Computational
Linguistics.
Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai Taitelbaum, Doron
Kukliansy, Vered Cohen, Thomas Scialom, Idan Szpektor, Avinatan
Hassidim, and Yossi Matias. 2022. TRUE:
Re-evaluating factual consistency evaluation. In Marine Carpuat,
Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors,
Proceedings of the 2022 conference of the north american chapter of
the association for computational linguistics: Human language
technologies, pages 3905–3920, Seattle, United States. Association
for Computational Linguistics.
Jeremy Howard and Sebastian Ruder. 2018. Universal language model
fine-tuning for text classification. In Iryna Gurevych and Yusuke
Miyao, editors, Proceedings of the 56th annual meeting of the
association for computational linguistics (volume 1: Long papers),
pages 328–339, Melbourne, Australia. Association for Computational
Linguistics.
Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and
Christopher Potts. 2023. Rigorously
assessing natural language explanations of neurons. In Yonatan
Belinkov, Sophie Hao, Jaap Jumelet, Najoung Kim, Arya McCarthy, and
Hosein Mohebbi, editors, Proceedings of the 6th BlackboxNLP
workshop: Analyzing and interpreting neural networks for NLP, pages
317–331, Singapore. Association for Computational Linguistics.
Lianzhe Huang, Shuming Ma, Dongdong Zhang, Furu Wei, and Houfeng Wang.
2022. Zero-shot
cross-lingual transfer of prompt-based tuning with a unified
multilingual prompt. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 conference on empirical
methods in natural language processing, pages 11488–11497, Abu
Dhabi, United Arab Emirates. Association for Computational Linguistics.
Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee
Sharkey. 2024. Sparse autoencoders
find highly interpretable features in language models. In The
twelfth international conference on learning representations.
William J. Hutchins. 2001. Machine translation over
fifty years. Histoire Épistémologie Langage, 23:7–31.
Khondoker Ittehadul Islam and Gabriele Sarti. 2025. Reveal-bangla: A dataset for
cross-lingual multi-step reasoning evaluation. Arxiv
Preprint.
Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio
Petroni, Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel,
and Edouard Grave. 2023. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine
Learning Research, 24(251):1–43.
Alon Jacovi and Yoav Goldberg. 2020. Towards faithfully
interpretable NLP systems: How should we define and
evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault, editors, Proceedings of the 58th
annual meeting of the association for computational linguistics,
pages 4198–4205, Online. Association for Computational Linguistics.
Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 conference of the
north American chapter of the association for computational
linguistics: Human language technologies, volume 1 (long and short
papers), pages 3543–3556, Minneapolis, Minnesota. Association for
Computational Linguistics.
Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong
Che, and Yoshua Bengio. 2018. Residual connections
encourage iterative inference. In International conference on
learning representations.
Fran Jelenić, Josip Jukić, Martin Tutek, Mate Puljiz, and Jan Snajder.
2024. Out-of-distribution
detection by leveraging between-layer transformation smoothness. In
The twelfth international conference on learning
representations.
Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B.
Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How can we know what
language models know? Transactions of the Association for
Computational Linguistics, 8:423–438.
Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea.
2022. Deep learning for
text style transfer: A survey. Computational Linguistics,
48(1):155–205.
Linghao Jin, Jacqueline He, Jonathan May, and Xuezhe Ma. 2023. Challenges in
context-aware neural machine translation. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 conference
on empirical methods in natural language processing, pages
15246–15263, Singapore. Association for Computational Linguistics.
Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous
translation models. In David Yarowsky, Timothy Baldwin, Anna
Korhonen, Karen Livescu, and Steven Bethard, editors, Proceedings of
the 2013 conference on empirical methods in natural language
processing, pages 1700–1709, Seattle, Washington, USA. Association
for Computational Linguistics.
Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei.
2020. Scaling laws for neural
language models. ArXiv.
Sariya Karimova, Patrick Simianer, and Stefan Riezler. 2018. A user-study on online
adaptation of neural machine translation to human post-edits.
Machine Translation, 32(4):309–324.
Marzena Karpinska and Mohit Iyyer. 2023. Large language models
effectively leverage document-level context for literary translation,
but critical errors persist. In Philipp Koehn, Barry Haddow, Tom
Kocmi, and Christof Monz, editors, Proceedings of the eighth
conference on machine translation, pages 419–451, Singapore.
Association for Computational Linguistics.
Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel Vera, and André F.
T. Martins. 2019. OpenKiwi:
An open source framework for quality estimation. In Marta R.
Costa-jussà and Enrique Alfonseca, editors, Proceedings of the 57th
annual meeting of the association for computational linguistics: System
demonstrations, pages 117–122, Florence, Italy. Association for
Computational Linguistics.
Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram Khadivi, and Hermann
Ney. 2019a. Pivot-based
transfer learning for neural machine translation between
non-English languages. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
conference on empirical methods in natural language processing and the
9th international joint conference on natural language processing
(EMNLP-IJCNLP), pages 866–876, Hong Kong, China. Association for
Computational Linguistics.
Yunsu Kim, Duc Thanh Tran, and Hermann Ney. 2019b. When and why is
document-level context useful in neural machine translation? In
Andrei Popescu-Belis, Sharid Loáiciga, Christian Hardmeier, and Deyi
Xiong, editors, Proceedings of the fourth workshop on discourse in
machine translation (DiscoMT 2019), pages 24–34, Hong Kong, China.
Association for Computational Linguistics.
Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or
epistemic? Does it matter? Structural Safety,
31(2):105–112. Risk Acceptance and Risk Communication.
Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2020.
Attention is
not only a weight: Analyzing transformers with vector norms. In
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors,
Proceedings of the 2020 conference on empirical methods in natural
language processing (EMNLP), pages 7057–7075, Online. Association
for Computational Linguistics.
Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2021.
Incorporating
Residual and Normalization Layers
into Analysis of Masked Language
Models. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021
conference on empirical methods in natural language processing,
pages 4547–4568, Online; Punta Cana, Dominican Republic. Association for
Computational Linguistics.
Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondřej Bojar, Anton
Dvorkovich, Christian Federmann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow, Marzena Karpinska, Philipp
Koehn, Benjamin Marie, Christof Monz, Kenton Murray, Masaaki Nagata,
Martin Popel, Maja Popović, et al. 2024a. Findings of the
WMT24 general machine translation shared task: The
LLM era is here but MT is not solved yet.
In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz, editors,
Proceedings of the ninth conference on machine translation,
pages 1–46, Miami, Florida, USA. Association for Computational
Linguistics.
Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondřej Bojar, Anton
Dvorkovich, Christian Federmann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow, Philipp Koehn, Benjamin Marie,
Christof Monz, Makoto Morishita, Kenton Murray, Masaaki Nagata, Toshiaki
Nakazawa, Martin Popel, et al. 2023. Findings of the 2023
conference on machine translation (WMT23):
LLMs are here but not quite there yet. In Philipp
Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors,
Proceedings of the eighth conference on machine translation,
pages 1–42, Singapore. Association for Computational Linguistics.
Tom Kocmi and Christian Federmann. 2023a. GEMBA-MQM:
Detecting translation quality error spans with GPT-4.
In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors,
Proceedings of the eighth conference on machine translation,
pages 768–775, Singapore. Association for Computational Linguistics.
Tom Kocmi and Christian Federmann. 2023b. Large language models
are state-of-the-art evaluators of translation quality. In Mary
Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail
Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove,
Sergi Alvarez Vidal, Nora Aranberri, Mara Nunziatini, Carla Parra
Escartín, Mikel Forcada, Maja Popovic, Carolina Scarton, and Helena
Moniz, editors, Proceedings of the 24th annual conference of the
european association for machine translation, pages 193–203,
Tampere, Finland. European Association for Machine Translation.
Tom Kocmi, Vilém Zouhar, Eleftherios Avramidis, Roman Grundkiewicz,
Marzena Karpinska, Maja Popović, Mrinmaya Sachan, and Mariya Shmatova.
2024b. Error span
annotation: A balanced approach for human evaluation of machine
translation. In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof
Monz, editors, Proceedings of the ninth conference on machine
translation, pages 1440–1453, Miami, Florida, USA. Association for
Computational Linguistics.
Philipp Koehn. 2005. Europarl:
A parallel corpus for statistical machine translation. In
Proceedings of machine translation summit x: papers, pages
79–86, Phuket, Thailand.
Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based
translation. In Proceedings of the 2003 human language
technology conference of the north American chapter of the
association for computational linguistics, pages 127–133.
Arne Köhn. 2015. What‘s
in an embedding? Analyzing word embeddings through multilingual
evaluation. In Lluís Màrquez, Chris Callison-Burch, and Jian Su,
editors, Proceedings of the 2015 conference on empirical methods in
natural language processing, pages 2067–2073, Lisbon, Portugal.
Association for Computational Linguistics.
Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal
Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina,
Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020. Captum: A unified and generic
model interpretability library for PyTorch. ArXiv.
Maarit Koponen, Wilker Aziz, Luciana Ramos, and Lucia Specia. 2012. Post-editing
time as a measure of cognitive effort. In Workshop on
post-editing technology and practice.
Maarit Koponen, Umut Sulubacak, Kaisa Vitikainen, and Jörg Tiedemann.
2020. MT
for subtitling: User evaluation of post-editing productivity. In
André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando
Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi,
Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg,
and Mikel L. Forcada, editors, Proceedings of the 22nd annual
conference of the european association for machine translation,
pages 115–124, Lisboa, Portugal. European Association for Machine
Translation.
Hans P. Krings. 2001. Repairing texts: Empirical investigations of
machine translation post-editing processes. Kent State University
Press.
Kalpesh Krishna, Deepak Nathani, Xavier Garcia, Bidisha Samanta, and
Partha Talukdar. 2022. Few-shot
controllable style transfer for low-resource multilingual settings.
In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,
Proceedings of the 60th annual meeting of the association for
computational linguistics (volume 1: Long papers), pages 7439–7468,
Dublin, Ireland. Association for Computational Linguistics.
Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021. Hurdles to
progress in long-form question answering. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors,
Proceedings of the 2021 conference of the north american chapter of
the association for computational linguistics: Human language
technologies, pages 4940–4957, Online. Association for
Computational Linguistics.
Satyapriya Krishna, Tessa Han, Alex Gu, Steven Wu, Shahin Jabbari, and
Himabindu Lakkaraju. 2024. The disagreement
problem in explainable machine learning: A practitioner’s
perspective. Transactions on Machine Learning Research.
Wojciech Kryscinski, Bryan McCann, Caiming Xiong, and Richard Socher.
2020. Evaluating the
factual consistency of abstractive text summarization. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of
the 2020 conference on empirical methods in natural language processing
(EMNLP), pages 9332–9346, Online. Association for Computational
Linguistics.
Solomon Kullback and Richard A Leibler. 1951. On information and
sufficiency. The annals of mathematical statistics,
22(1):79–86.
Isabel Lacruz, Michael Denkowski, and Alon Lavie. 2014. Cognitive demand and
cognitive effort in post-editing. In Sharon O’Brien, Michel Simard,
and Lucia Specia, editors, Proceedings of the 11th conference of the
association for machine translation in the americas, pages 73–84,
Vancouver, Canada. Association for Machine Translation in the Americas.
Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam
Gershman, and Finale Doshi-Velez. 2019. An evaluation of the
human-interpretability of explanation. ArXiv,
abs/1902.00006.
Huiyuan Lai, Jiali Mao, Antonio Toral, and Malvina Nissim. 2022. Human judgement as a
compass to navigate automatic metrics for formality transfer. In
Anya Belz, Maja Popović, Ehud Reiter, and Anastasia Shimorina, editors,
Proceedings of the 2nd workshop on human evaluation of NLP systems
(HumEval), pages 102–115, Dublin, Ireland. Association for
Computational Linguistics.
Surafel Melaku Lakew, Mattia Di Gangi, and Marcello Federico. 2019. Controlling the output
length of neural machine translation. In Jan Niehues, Rolando
Cattoni, Sebastian Stüker, Matteo Negri, Marco Turchi, Thanh-Le Ha,
Elizabeth Salesky, Ramon Sanabria, Loic Barrault, Lucia Specia, and
Marcello Federico, editors, Proceedings of the 16th international
conference on spoken language translation, Hong Kong. Association
for Computational Linguistics.
Anna Langedijk, Hosein Mohebbi, Gabriele Sarti, Willem Zuidema, and Jaap
Jumelet. 2024. DecoderLens:
Layerwise interpretation of encoder-decoder transformers. In Kevin
Duh, Helena Gomez, and Steven Bethard, editors, Findings of the
association for computational linguistics: NAACL 2024, pages
4764–4780, Mexico City, Mexico. Association for Computational
Linguistics.
Samuel Läubli, Chantal Amrhein, Patrick Düggelin, Beatriz Gonzalez,
Alena Zwahlen, and Martin Volk. 2019. Post-editing productivity with
neural machine translation: An empirical assessment of speed and quality
in the banking and finance domain. In Mikel Forcada, Andy Way, Barry
Haddow, and Rico Sennrich, editors, Proceedings of machine
translation summit XVII: Research track, pages 267–272, Dublin,
Ireland. European Association for Machine Translation.
Samuel Läubli, Mark Fishel, Gary Massey, Maureen Ehrensberger-Dow, and
Martin Volk. 2013. Assessing
post-editing efficiency in a realistic translation environment. In
Sharon O’Brien, Michel Simard, and Lucia Specia, editors,
Proceedings of the 2nd workshop on post-editing technology and
practice, Nice, France.
Samuel Läubli, Rico Sennrich, and Martin Volk. 2018. Has machine translation
achieved human parity? A case for document-level evaluation. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii,
editors, Proceedings of the 2018 conference on empirical methods in
natural language processing, pages 4791–4796, Brussels, Belgium.
Association for Computational Linguistics.
Jihyeon Lee, Taehee Kim, Yunwon Tae, Cheonbok Park, and Jaegul Choo.
2023a. PePe:
Personalized post-editing model utilizing user-generated post-edits.
In Andreas Vlachos and Isabelle Augenstein, editors, Findings of the
association for computational linguistics: EACL 2023, pages
239–253, Dubrovnik, Croatia. Association for Computational Linguistics.
Seungjun Lee, Jungseob Lee, Hyeonseok Moon, Chanjun Park, Jaehyung Seo,
Sugyeong Eo, Seonmin Koo, and Heuiseok Lim. 2023b. A survey on evaluation
metrics for machine translation. Mathematics, 11(4).
Christoph Leiter, Piyawat Lertvittayakumjorn, Marina Fomicheva, Wei
Zhao, Yang Gao, and Steffen Eger. 2024. Towards explainable
evaluation metrics for machine translation. Journal of Machine
Learning Research, 25(75):1–49.
Shahar Levy, Koren Lazar, and Gabriel Stanovsky. 2021. Collecting a
large-scale gender bias dataset for coreference resolution and machine
translation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih, editors, Findings of the association for
computational linguistics: EMNLP 2021, pages 2470–2480, Punta Cana,
Dominican Republic. Association for Computational Linguistics.
Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-intensive NLP tasks. In
Proceedings of the 34th international conference on neural
information processing systems, Red Hook, NY, USA. Curran
Associates Inc.
Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek
Thakur, Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame,
Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani,
Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu,
Nicolas Patry, et al. 2021. Datasets: A
community library for natural language processing. In Heike Adel and
Shuming Shi, editors, Proceedings of the 2021 conference on
empirical methods in natural language processing: System
demonstrations, pages 175–184, Online; Punta Cana, Dominican
Republic. Association for Computational Linguistics.
Haijun Li, Tianqi Shi, Zifu Shang, Yuxuan Han, Xueyu Zhao, Hao Wang, Yu
Qian, Zhiqiang Qian, Linlong Xu, Minghao Wu, Chenyang Lyu, Longyue Wang,
Gongbo Tang, Weihua Luo, Zhao Xu, and Kaifu Zhang. 2025. TransBench: Benchmarking machine
translation for industrial-scale applications. Arxiv.
Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. 2016. Visualizing and
understanding neural models in NLP. In Kevin Knight,
Ani Nenkova, and Owen Rambow, editors, Proceedings of the 2016
conference of the north American chapter of the association
for computational linguistics: Human language technologies, pages
681–691, San Diego, California. Association for Computational
Linguistics.
Xuhong Li, Haoyi Xiong, Xingjian Li, Xuanyu Wu, Xiao Zhang, Ji Liu,
Jiang Bian, and Dejing Dou. 2022. Interpretable deep
learning: Interpretation, interpretability, trustworthiness, and
beyond. Knowledge and Information Systems,
64(12):3197–3234.
Daniel Licht, Cynthia Gao, Janice Lam, Francisco Guzman, Mona Diab, and
Philipp Koehn. 2022. Consistent human
evaluation of machine translation across language pairs. In Kevin
Duh and Francisco Guzmán, editors, Proceedings of the 15th biennial
conference of the association for machine translation in the americas
(volume 1: Research track), pages 309–321, Orlando, USA.
Association for Machine Translation in the Americas.
Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith,
Nicolas Sonnerat, Vikrant Varma, Janos Kramar, Anca Dragan, Rohin Shah,
and Neel Nanda. 2024. Gemma scope:
Open sparse autoencoders everywhere all at once on gemma 2. In
Yonatan Belinkov, Najoung Kim, Jaap Jumelet, Hosein Mohebbi, Aaron
Mueller, and Hanjie Chen, editors, Proceedings of the 7th
BlackboxNLP workshop: Analyzing and interpreting neural networks for
NLP, pages 278–300, Miami, Florida, US. Association for
Computational Linguistics.
Zheng Wei Lim, Ekaterina Vylomova, Charles Kemp, and Trevor Cohn. 2024.
Predicting human
translation difficulty with neural machine translation.
Transactions of the Association for Computational Linguistics,
12:1479–1496.
Huan Lin, Liang Yao, Baosong Yang, Dayiheng Liu, Haibo Zhang, Weihua
Luo, Degen Huang, and Jinsong Su. 2021. Towards user-driven
neural machine translation. In Chengqing Zong, Fei Xia, Wenjie Li,
and Roberto Navigli, editors, Proceedings of the 59th annual meeting
of the association for computational linguistics and the 11th
international joint conference on natural language processing (volume 1:
Long papers), pages 4008–4018, Online. Association for
Computational Linguistics.
Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui
Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du,
Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary,
Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab,
et al. 2022. Few-shot learning
with multilingual generative language models. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022
conference on empirical methods in natural language processing,
pages 9019–9052, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.
Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou
Xia, Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe Ma, Antonios
Anastasopoulos, Patrick Littell, and Graham Neubig. 2019. Choosing transfer languages
for cross-lingual learning. In Anna Korhonen, David Traum, and Lluís
Màrquez, editors, Proceedings of the 57th annual meeting of the
association for computational linguistics, pages 3125–3135,
Florence, Italy. Association for Computational Linguistics.
Mary J. Lindstrom and Douglas M. Bates. 1988. Newton—raphson and
EM algorithms for linear mixed-effects models for repeated-measures
data. Journal of the American Statistical Association,
83(404):1014–1022.
Pierre Lison, Jörg Tiedemann, and Milen Kouylekov. 2018. OpenSubtitles2018:
Statistical rescoring of sentence alignments in large, noisy parallel
corpora. In Nicoletta Calzolari, Khalid Choukri, Christopher Cieri,
Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente
Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk,
Stelios Piperidis, and Takenobu Tokunaga, editors, Proceedings of
the eleventh international conference on language resources and
evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).
Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What makes good
in-context examples for GPT-3? In Eneko Agirre,
Marianna Apidianaki, and Ivan Vulić, editors, Proceedings of deep
learning inside out (DeeLIO 2022): The 3rd workshop on knowledge
extraction and integration for deep learning architectures, pages
100–114, Dublin, Ireland; Online. Association for Computational
Linguistics.
Nelson Liu, Tianyi Zhang, and Percy Liang. 2023a. Evaluating
verifiability in generative search engines. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Findings of the association for
computational linguistics: EMNLP 2023, pages 7001–7025, Singapore.
Association for Computational Linguistics.
Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Hang Pu, Yu Lan, and Chao
Shen. 2023b. CoCo:
Coherence-enhanced machine-generated text detection under low resource
with contrastive learning. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 conference on empirical
methods in natural language processing, pages 16167–16188,
Singapore. Association for Computational Linguistics.
Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan
Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transactions of the
Association for Computational Linguistics, 8:726–742.
Zhongtao Liu, Parker Riley, Daniel Deutsch, Alison Lui, Mengmeng Niu,
Apurva Shah, and Markus Freitag. 2024. Beyond human-only:
Evaluating human-machine collaboration for collecting high-quality
translation data. In Barry Haddow, Tom Kocmi, Philipp Koehn, and
Christof Monz, editors, Proceedings of the ninth conference on
machine translation, pages 1095–1106, Miami, Florida, USA.
Association for Computational Linguistics.
Zihan Liu, Genta Indra Winata, and Pascale Fung. 2021. Continual
mixed-language pre-training for extremely low-resource neural machine
translation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Findings of the association for computational
linguistics: ACL-IJCNLP 2021, pages 2706–2718, Online. Association
for Computational Linguistics.
Arle Richard Lommel, Aljoscha Burchardt, and Hans Uszkoreit. 2013. Multidimensional quality
metrics: A flexible system for assessing translation quality. In
Proceedings of translating and the computer 35, London, UK.
Aslib.
Arle Lommel, Serge Gladkoff, Alan Melby, Sue Ellen Wright, Ingemar
Strandvik, Katerina Gasova, Angelika Vaasa, Andy Benzo, Romina Marazzato
Sparano, Monica Foresi, Johani Innis, Lifeng Han, and Goran Nenadic.
2024. The
multi-range theory of translation quality measurement: MQM
scoring models and statistical quality control. In Marianna
Martindale, Janice Campbell, Konstantin Savenkov, and Shivali Goel,
editors, Proceedings of the 16th conference of the association for
machine translation in the americas (volume 2: presentations),
pages 75–94, Chicago, USA. Association for Machine Translation in the
Americas.
António Lopes, M. Amin Farajian, Rachel Bawden, Michael Zhang, and André
F. T. Martins. 2020. Document-level neural
MT: A systematic comparison. In André Martins, Helena
Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla
Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens,
Ana Guerberof, Mary Nurminen, Lena Marg, and Mikel L. Forcada, editors,
Proceedings of the 22nd annual conference of the european
association for machine translation, pages 225–234, Lisboa,
Portugal. European Association for Machine Translation.
Sheng Lu, Shan Chen, Yingya Li, Danielle Bitterman, Guergana Savova, and
Iryna Gurevych. 2023. Measuring
pointwise 𝒱-usable information
in-context-ly. In Houda Bouamor, Juan Pino, and Kalika Bali,
editors, Findings of the association for computational linguistics:
EMNLP 2023, pages 15739–15756, Singapore. Association for
Computational Linguistics.
Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus
Stenetorp. 2022. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order
sensitivity. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio, editors, Proceedings of the 60th annual meeting of
the association for computational linguistics (volume 1: Long
papers), pages 8086–8098, Dublin, Ireland. Association for
Computational Linguistics.
Scott M. Lundberg and Su-In Lee. 2017. A unified approach
to interpreting model predictions. In Proceedings of the 31st
international conference on neural information processing systems,
volume 30, pages 4768–4777, Long Beach, California, USA. Curran
Associates Inc.
Cheng Luo, Wei Liu, Jieyu Lin, Jiajie Zou, Ming Xiang, and Nai Ding.
2022. Simple but
challenging: Natural language inference models fail on simple
sentences. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang,
editors, Findings of the association for computational linguistics:
EMNLP 2022, pages 3449–3462, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.
Lijia Ma, Xingchen Xu, and Yong Tan. 2024. Crafting knowledge: Exploring
the creative mechanisms of chat-based search engines.
Arxiv.
Mohammad Reza Ghasemi Madani, Aryo Pradipta Gema, Gabriele Sarti, Yu
Zhao, Pasquale Minervini, and Andrea Passerini. 2025. Noiser: Bounded input
perturbations for attributing large language models. In Second
conference on language modeling.
Andreas Madsen, Sarath Chandar, and Siva Reddy. 2024. Are
self-explanations from large language models faithful? In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the
association for computational linguistics: ACL 2024, pages 295–337,
Bangkok, Thailand. Association for Computational Linguistics.
Andreas Madsen, Nicholas Meade, Vaibhav Adlakha, and Siva Reddy. 2022a.
Evaluating
the faithfulness of importance measures in NLP by
recursively masking allegedly important tokens and retraining. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Findings
of the association for computational linguistics: EMNLP 2022, pages
1731–1751, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.
Andreas Madsen, Siva Reddy, and Sarath Chandar. 2022b. Post-hoc interpretability for
neural NLP: A survey. ACM Comput. Surv., 55(8).
Suvodeep Majumder, Stanislas Lauly, Maria Nadejde, Marcello Federico,
and Georgiana Dinu. 2022. A
baseline revisited: Pushing the limits of multi-segment models for
context-aware translation. ArXiv, abs/2210.10906.
Samuel Marks. 2025. Downstream
applications as validation of interpretability. LessWrong
Post.
Samuel Marks and Max Tegmark. 2024. The geometry of truth: Emergent
linear structure in large language model representations of true/false
datasets. In Proceedings of the 1st conference on language
modeling (COLM).
Marianna Martindale and Marine Carpuat. 2018. Fluency over adequacy: A pilot
study in measuring user trust in imperfect MT. In Colin
Cherry and Graham Neubig, editors, Proceedings of the 13th
conference of the association for machine translation in the
Americas (volume 1: Research track), pages 13–25,
Boston, MA. Association for Machine Translation in the Americas.
Sameen Maruf and Gholamreza Haffari. 2018. Document context neural
machine translation with memory networks. In Iryna Gurevych and
Yusuke Miyao, editors, Proceedings of the 56th annual meeting of the
association for computational linguistics (volume 1: Long papers),
pages 1275–1284, Melbourne, Australia. Association for Computational
Linguistics.
Sameen Maruf, Fahimeh Saleh, and Gholamreza Haffari. 2021. A survey on document-level neural
machine translation: Methods and evaluation. ACM Comput.
Surv., 54(2).
Evgeny Matusov. 2019. The
challenges of using neural machine translation for literature. In
James Hadley, Maja Popović, Haithem Afli, and Andy Way, editors,
Proceedings of the qualities of literary machine translation,
pages 10–19, Dublin, Ireland. European Association for Machine
Translation.
Thomas Mayer and Michael Cysouw. 2014. Creating a massively parallel
Bible corpus. In Nicoletta Calzolari, Khalid Choukri,
Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors,
Proceedings of the ninth international conference on language
resources and evaluation (LREC‘14), pages 3158–3163,
Reykjavik, Iceland. European Language Resources Association (ELRA).
Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On faithfulness and
factuality in abstractive summarization. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of
the 58th annual meeting of the association for computational
linguistics, pages 1906–1919, Online. Association for Computational
Linguistics.
R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons:
Diagnosing syntactic heuristics in natural language inference. In
Anna Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings
of the 57th annual meeting of the association for computational
linguistics, pages 3428–3448, Florence, Italy. Association for
Computational Linguistics.
Thomas McGrath, Daniel Balsam, Myra Deng, and Eric Ho. 2024. Understanding
and steering llama 3 with sparse autoencoders. Goodfire
Blog.
Nikita Mehandru, Sweta Agrawal, Yimin Xiao, Ge Gao, Elaine Khoong,
Marine Carpuat, and Niloufar Salehi. 2023. Physician
detection of clinical harm in machine translation: Quality estimation
aids in reliance and backtranslation identifies critical errors. In
Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of
the 2023 conference on empirical methods in natural language
processing, pages 11633–11647, Singapore. Association for
Computational Linguistics.
Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating
and editing factual associations in GPT. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in neural information processing systems, volume 35,
pages 17359–17372. Curran Associates, Inc.
Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis
Song, Martin Chadwick, Mia Glaese, Susannah Young, Lucy
Campbell-Gillingham, Geoffrey Irving, et al. 2022. Teaching language models to
support answers with verified quotes. Arxiv.
Alessio Miaschi, Gabriele Sarti, Dominique Brunato, Felice Dell’Orletta,
and Giulia Venturi. 2022. Probing linguistic knowledge in
italian neural language models across language varieties.
Italian Journal of Computational Linguistics (IJCoL),
8(1):25–44.
Paul Michel and Graham Neubig. 2018. Extreme adaptation for
personalized neural machine translation. In Iryna Gurevych and
Yusuke Miyao, editors, Proceedings of the 56th annual meeting of the
association for computational linguistics (volume 2: Short papers),
pages 312–318, Melbourne, Australia. Association for Computational
Linguistics.
Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, and James Henderson.
2018. Document-level
neural machine translation with hierarchical attention networks. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii,
editors, Proceedings of the 2018 conference on empirical methods in
natural language processing, pages 2947–2954, Brussels, Belgium.
Association for Computational Linguistics.
Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian Roark, and Jason
Eisner. 2019. What kind
of language is hard to language-model? In Anna Korhonen, David
Traum, and Lluís Màrquez, editors, Proceedings of the 57th annual
meeting of the association for computational linguistics, pages
4975–4989, Florence, Italy. Association for Computational Linguistics.
Vivek Miglani, Aobo Yang, Aram Markosyan, Diego Garcia-Olano, and Narine
Kokhlikyan. 2023. Using captum to
explain generative language models. In Liling Tan, Dmitrijs
Milajevs, Geeticka Chauhan, Jeremy Gwinnup, and Elijah Rippeth, editors,
Proceedings of the 3rd workshop for natural language processing open
source software (NLP-OSS 2023), pages 165–173, Singapore.
Association for Computational Linguistics.
Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regularities in
continuous space word representations. In Lucy Vanderwende, Hal
Daumé III, and Katrin Kirchhoff, editors, Proceedings of the 2013
conference of the north American chapter of the association
for computational linguistics: Human language technologies, pages
746–751, Atlanta, Georgia. Association for Computational Linguistics.
Hosein Mohebbi, Willem Zuidema, Grzegorz Chrupała, and Afra Alishahi.
2023. Quantifying
context mixing in transformers. In Andreas Vlachos and Isabelle
Augenstein, editors, Proceedings of the 17th conference of the
european chapter of the association for computational linguistics,
pages 3378–3400, Dubrovnik, Croatia. Association for Computational
Linguistics.
Joss Moorkens, Antonio Toral, Sheila Castilho, and Andy Way. 2018. Translators’ perceptions of
literary post-editing using statistical and neural machine
translation. Translation Spaces, 7(2):240–262.
John Moran, Christian Saam, and Dave Lewis. 2014. Towards desktop-based
CAT tool instrumentation. In Sharon O’Brien, Michel
Simard, and Lucia Specia, editors, Proceedings of the 11th
conference of the association for machine translation in the
americas, pages 99–112, Vancouver, Canada. Association for Machine
Translation in the Americas.
Marius Mosbach, Vagrant Gautam, Tomás Vergara Browne, Dietrich Klakow,
and Mor Geva. 2024. From insights to
actions: The impact of interpretability and analysis research on
NLP. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen, editors, Proceedings of the 2024 conference on empirical
methods in natural language processing, pages 3078–3105, Miami,
Florida, USA. Association for Computational Linguistics.
Yasmin Moslem, Rejwanul Haque, John D. Kelleher, and Andy Way. 2023. Adaptive machine
translation with large language models. In Mary Nurminen, Judith
Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail Mikhailov, Frederike
Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal,
Nora Aranberri, Mara Nunziatini, Carla Parra Escartín, Mikel Forcada,
Maja Popovic, Carolina Scarton, and Helena Moniz, editors,
Proceedings of the 24th annual conference of the european
association for machine translation, pages 227–237, Tampere,
Finland. European Association for Machine Translation.
Norman Mu, Sarah Chen, Zifan Wang, Sizhe Chen, David Karamardian, Lulwa
Aljeraisy, Dan Hendrycks, and David Wagner. 2023. Can LLMs follow simple
rules? Arxiv.
Benjamin Muller, John Wieting, Jonathan Clark, Tom Kwiatkowski,
Sebastian Ruder, Livio Soares, Roee Aharoni, Jonathan Herzig, and Xinyi
Wang. 2023. Evaluating and
modeling attribution for cross-lingual question answering. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the
2023 conference on empirical methods in natural language
processing, pages 144–157, Singapore. Association for Computational
Linguistics.
Mathias Müller, Annette Rios, Elena Voita, and Rico Sennrich. 2018. A large-scale test set for
the evaluation of context-aware pronoun translation in neural machine
translation. In Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol,
Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, and Karin
Verspoor, editors, Proceedings of the third conference on machine
translation: Research papers, pages 61–72, Brussels, Belgium.
Association for Computational Linguistics.
Maria Nadejde, Anna Currey, Benjamin Hsu, Xing Niu, Marcello Federico,
and Georgiana Dinu. 2022. CoCoA-MT:
A dataset and benchmark for contrastive controlled MT with
application to formality. In Marine Carpuat, Marie-Catherine de
Marneffe, and Ivan Vladimir Meza Ruiz, editors, Findings of the
association for computational linguistics: NAACL 2022, pages
616–632, Seattle, United States. Association for Computational
Linguistics.
Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang,
Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju,
William Saunders, et al. 2021. Webgpt: Browser-assisted
question-answering with human feedback. Arxiv.
Neel Nanda. 2023. Attribution
patching: Activation patching at industrial scale.
Mariana Neves, Cristian Grozea, Philippe Thomas, Roland Roller, Rachel
Bawden, Aurélie Névéol, Steffen Castle, Vanessa Bonato, Giorgio Maria Di
Nunzio, Federica Vezzani, Maika Vicente Navarro, Lana Yeganova, and
Antonio Jimeno Yepes. 2024. Findings of the
WMT 2024 biomedical translation shared task: Test sets on
abstract level. In Barry Haddow, Tom Kocmi, Philipp Koehn, and
Christof Monz, editors, Proceedings of the ninth conference on
machine translation, pages 124–138, Miami, Florida, USA.
Association for Computational Linguistics.
Mariana Neves, Antonio Jimeno Yepes, Aurélie Névéol, Rachel Bawden,
Giorgio Maria Di Nunzio, Roland Roller, Philippe Thomas, Federica
Vezzani, Maika Vicente Navarro, Lana Yeganova, Dina Wiemann, and
Cristian Grozea. 2023. Findings of the
WMT 2023 biomedical translation shared task: Evaluation of
ChatGPT 3.5 as a comparison system. In
Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors,
Proceedings of the eighth conference on machine translation,
pages 43–54, Singapore. Association for Computational Linguistics.
Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and
Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language
understanding. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel Tetreault, editors, Proceedings of the 58th annual meeting of
the association for computational linguistics, pages 4885–4901,
Online. Association for Computational Linguistics.
Xing Niu and Marine Carpuat. 2020. Controlling
neural machine translation formality with synthetic supervision.
Proceedings of the AAAI Conference on Artificial Intelligence,
34(05):8568–8575.
Xing Niu, Marianna Martindale, and Marine Carpuat. 2017. A study of style in machine
translation: Controlling the formality of machine translation
output. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel,
editors, Proceedings of the 2017 conference on empirical methods in
natural language processing, pages 2814–2819, Copenhagen, Denmark.
Association for Computational Linguistics.
NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad,
Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel
Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al
Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip
Hansanti, et al. 2024. Scaling neural machine
translation to 200 languages. Nature, 630(8018):841–846.
nostalgebraist. 2020. Interpreting
GPT: The logit lens. AI Alignment Forum.
Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski,
Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena. 2022. Show your work:
Scratchpads for intermediate computation with language models. In
Deep learning for code workshop.
Franz Josef Och, Christoph Tillmann, and Hermann Ney. 1999. Improved alignment models for
statistical machine translation. In 1999 joint
SIGDAT conference on empirical methods in natural language
processing and very large corpora.
Chris Olah. 2023. Distributed
representations: Composition & superposition. Transformer
Circuits Thread.
Bruno A. Olshausen and David J. Field. 1997. Sparse coding with
an overcomplete basis set: A strategy employed by V1? Vision
Research, 37(23):3311–3325.
OpenAI. 2023. Gpt-4 technical
report. Arxiv.
Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan
Ng, David Grangier, and Michael Auli. 2019. Fairseq: A fast, extensible
toolkit for sequence modeling. In Waleed Ammar, Annie Louis, and
Nasrin Mostafazadeh, editors, Proceedings of the 2019 conference of
the north American chapter of the association for
computational linguistics (demonstrations), pages 48–53,
Minneapolis, Minnesota. Association for Computational Linguistics.
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A
method for automatic evaluation of machine translation. In Pierre
Isabelle, Eugene Charniak, and Dekang Lin, editors, Proceedings of
the 40th annual meeting of the association for computational
linguistics, pages 311–318, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.
Kiho Park, Yo Joong Choe, and Victor Veitch. 2023. The linear
representation hypothesis and the geometry of large language models.
In Causal representation learning workshop at NeurIPS 2023.
Carla Parra Escartín and Manuel Arcedillo. 2015. Machine
translation evaluation made fuzzier: A study on post-editing
productivity and evaluation metrics in commercial settings. In
Proceedings of machine translation summit XV: papers, Miami,
USA.
Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global vectors for word representation. In Alessandro Moschitti, Bo
Pang, and Walter Daelemans, editors, Proceedings of the 2014
conference on empirical methods in natural language processing
(EMNLP), pages 1532–1543, Doha, Qatar. Association for
Computational Linguistics.
Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim Rocktäschel,
Yuxiang Wu, Alexander H. Miller, and Sebastian Riedel. 2020. How context affects
language models’ factual predictions. In Automated knowledge
base construction.
Anirudh Phukan, Shwetha Somasundaram, Apoorv Saxena, Koustava Goswami,
and Balaji Vasan Srinivasan. 2024. Peering into
the mind of language models: An approach for attribution in contextual
question answering. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the association for computational
linguistics: ACL 2024, pages 11481–11495, Bangkok, Thailand.
Association for Computational Linguistics.
Charles Pierse. 2021. Transformers
interpret.
Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Dmytro Okhonko,
Samuel Broscheit, Gautier Izacard, Patrick Lewis, Barlas Oğuz, Edouard
Grave, Wen-tau Yih, et al. 2021. The web is your
oyster-knowledge-intensive NLP against a very large web corpus.
Arxiv.
Barbara Plank. 2022. The
“problem” of human label variation: On ground
truth in data, modeling and evaluation. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of the 2022 conference
on empirical methods in natural language processing, pages
10671–10682, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.
Barbara Plank, Dirk Hovy, and Anders Søgaard. 2014. Linguistically debatable or
just plain wrong? In Kristina Toutanova and Hua Wu, editors,
Proceedings of the 52nd annual meeting of the association for
computational linguistics (volume 2: Short papers), pages 507–511,
Baltimore, Maryland. Association for Computational Linguistics.
Mirko Plitt and François Masselot. 2010. A
Productivity Test of Statistical
Machine Translation
Post-Editing in a Typical
Localisation Context. The Prague
Bulletin of Mathematical Linguistics, 93(1).
Maja Popović. 2015. ChrF: Character
n-gram F-score for automatic MT
evaluation. In Ondřej Bojar, Rajan Chatterjee, Christian Federmann,
Barry Haddow, Chris Hokamp, Matthias Huck, Varvara Logacheva, and Pavel
Pecina, editors, Proceedings of the tenth workshop on statistical
machine translation, pages 392–395, Lisbon, Portugal. Association
for Computational Linguistics.
Maja Popović. 2020. Informative
manual evaluation of machine translation output. In Donia Scott,
Nuria Bel, and Chengqing Zong, editors, Proceedings of the 28th
international conference on computational linguistics, pages
5059–5069, Barcelona, Spain (Online). International Committee on
Computational Linguistics.
Matt Post. 2018. A call
for clarity in reporting BLEU scores. In Ondřej Bojar,
Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof
Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
Specia, Marco Turchi, and Karin Verspoor, editors, Proceedings of
the third conference on machine translation: Research papers, pages
186–191, Brussels, Belgium. Association for Computational Linguistics.
Marcelo OR Prates, Pedro H Avelar, and Luís C Lamb. 2020. Assessing
gender bias in machine translation: A case study with
Google Translate. Neural Computing and
Applications, 32:6363–6381.
Jirui Qi^*, Gabriele Sarti^*, Raquel Fernández, and Arianna Bisazza.
2024. Model
internals-based answer attribution for trustworthy retrieval-augmented
generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,
editors, Proceedings of the 2024 conference on empirical methods in
natural language processing, pages 6037–6053, Miami, Florida, USA.
Association for Computational Linguistics.
Ella Rabinovich, Raj Nath Patel, Shachar Mirkin, Lucia Specia, and Shuly
Wintner. 2017. Personalized
machine translation: Preserving original author traits. In Mirella
Lapata, Phil Blunsom, and Alexander Koller, editors, Proceedings of
the 15th conference of the European chapter of the
association for computational linguistics: Volume 1, long papers,
pages 1074–1084, Valencia, Spain. Association for Computational
Linguistics.
Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models
are unsupervised multitask learners. OpenAI Blog.
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67.
Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. 2024.
A practical review of
mechanistic interpretability for transformer-based language models.
Arxiv Preprint.
Korbinian Randl, John Pavlopoulos, Aron Henriksson, and Tony Lindgren.
2025. Evaluating
the reliability of self-explanations in large language models. In
Discovery science: 27th international conference, pages 36–51,
Berlin, Heidelberg. Springer-Verlag.
Sudha Rao and Joel Tetreault. 2018. Dear sir or madam, may
I introduce the GYAFC dataset: Corpus,
benchmarks and metrics for formality style transfer. In Marilyn
Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018
conference of the north American chapter of the association
for computational linguistics: Human language technologies, volume 1
(long papers), pages 129–140, New Orleans, Louisiana. Association
for Computational Linguistics.
Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, Lora Aroyo, Michael
Collins, Dipanjan Das, Slav Petrov, Gaurav Singh Tomar, Iulia Turc, and
David Reitter. 2023. Measuring attribution in
natural language generation models. Computational
Linguistics, 49(4):777–840.
Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell.
2023. Toward
transparent AI: A survey on interpreting the inner structures of deep
neural networks. In 2023 IEEE conference on secure and
trustworthy machine learning (SaTML), pages 464–483.
Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. 2023. Conformal nucleus
sampling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Findings of the association for computational linguistics:
ACL 2023, pages 27–34, Toronto, Canada. Association for
Computational Linguistics.
Ricardo Rei, José G. C. de Souza, Duarte Alves, Chrysoula Zerva, Ana C
Farinha, Taisiya Glushkova, Alon Lavie, Luisa Coheur, and André F. T.
Martins. 2022a. COMET-22:
Unbabel-IST 2022 submission for the metrics shared
task. In Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares,
Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark
Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman
Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Tom Kocmi, André Martins, Makoto Morishita, et al., editors,
Proceedings of the seventh conference on machine translation
(WMT), pages 578–585, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.
Ricardo Rei, Ana C Farinha, José G. C. de Souza, Pedro G. Ramos, André
F. T. Martins, Luisa Coheur, and Alon Lavie. 2022b. Searching for
COMETINHO: The little metric that could. In Helena
Moniz, Lieve Macken, Andrew Rufener, Loïc Barrault, Marta R.
Costa-jussà, Christophe Declercq, Maarit Koponen, Ellie Kemp, Spyridon
Pilos, Mikel L. Forcada, Carolina Scarton, Joachim Van den Bogaert, Joke
Daems, Arda Tezcan, Bram Vanroy, and Margot Fonteyne, editors,
Proceedings of the 23rd annual conference of the european
association for machine translation, pages 61–70, Ghent, Belgium.
European Association for Machine Translation.
Ricardo Rei, Ana C Farinha, Chrysoula Zerva, Daan van Stigt, Craig
Stewart, Pedro Ramos, Taisiya Glushkova, André F. T. Martins, and Alon
Lavie. 2021. Are
references really needed? Unbabel-IST 2021 submission for
the metrics shared task. In Loic Barrault, Ondrej Bojar, Fethi
Bougares, Rajen Chatterjee, Marta R. Costa-jussa, Christian Federmann,
Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman
Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Philipp Koehn, Tom Kocmi, Andre Martins, Makoto Morishita, et
al., editors, Proceedings of the sixth conference on machine
translation, pages 1030–1040, Online. Association for Computational
Linguistics.
Ricardo Rei, Nuno M. Guerreiro, Marcos Treviso, Luisa Coheur, Alon
Lavie, and André Martins. 2023. The inside story:
Towards better understanding of machine translation neural evaluation
metrics. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st annual meeting of the association
for computational linguistics (volume 2: Short papers), pages
1089–1105, Toronto, Canada. Association for Computational Linguistics.
Ricardo Rei, Jose Pombal, Nuno M. Guerreiro, João Alves, Pedro Henrique
Martins, Patrick Fernandes, Helena Wu, Tania Vaz, Duarte Alves, Amin
Farajian, Sweta Agrawal, Antonio Farinhas, José G. C. De Souza, and
André Martins. 2024. Tower v2:
Unbabel-IST 2024 submission for the general MT
shared task. In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof
Monz, editors, Proceedings of the ninth conference on machine
translation, pages 185–204, Miami, Florida, USA. Association for
Computational Linguistics.
Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. 2020. COMET:
A neural framework for MT evaluation. In Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the
2020 conference on empirical methods in natural language processing
(EMNLP), pages 2685–2702, Online. Association for Computational
Linguistics.
Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris
Callison-Burch, and Jason Wei. 2022. A recipe for
arbitrary text style transfer with large language models. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,
Proceedings of the 60th annual meeting of the association for
computational linguistics (volume 2: Short papers), pages 837–848,
Dublin, Ireland. Association for Computational Linguistics.
Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hua Wu,
Ji-Rong Wen, and Haifeng Wang. 2025. Investigating the
factual knowledge boundary of large language models with retrieval
augmentation. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend
Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert, editors,
Proceedings of the 31st international conference on computational
linguistics, pages 3697–3715, Abu Dhabi, UAE. Association for
Computational Linguistics.
Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i trust
you?": Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–1144, New York, NY,
USA. Association for Computing Machinery.
Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and
Alexander Turner. 2024. Steering llama 2
via contrastive activation addition. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd annual meeting
of the association for computational linguistics (volume 1: Long
papers), pages 15504–15522, Bangkok, Thailand. Association for
Computational Linguistics.
Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in
BERTology: What we know about how BERT
works. Transactions of the Association for Computational
Linguistics, 8:842–866.
Raphael Rubino, Atsushi Fujita, and Benjamin Marie. 2021. Error
identification for machine translation with metric embedding and
attention. In Yang Gao, Steffen Eger, Wei Zhao, Piyawat
Lertvittayakumjorn, and Marina Fomicheva, editors, Proceedings of
the 2nd workshop on evaluation and comparison of NLP systems, pages
146–156, Punta Cana, Dominican Republic. Association for Computational
Linguistics.
Cynthia Rudin. 2019. Stop explaining black
box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence,
1:206–215.
Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van
Durme. 2018. Gender bias
in coreference resolution. In Marilyn Walker, Heng Ji, and Amanda
Stent, editors, Proceedings of the 2018 conference of the north
American chapter of the association for computational
linguistics: Human language technologies, volume 2 (short papers),
pages 8–14, New Orleans, Louisiana. Association for Computational
Linguistics.
David E. Rumelhart and James L. McClelland. 1987. Learning internal
representations by error propagation. In Parallel distributed
processing: Explorations in the microstructure of cognition:
foundations, pages 318–362. MIT Press.
Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang
Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak,
Debajyoti Datta, et al. 2022. Multitask prompted
training enables zero-shot task generalization. In Proceedings
of the tenth international conference on learning representations
(ICLR).
Soumya Sanyal and Xiang Ren. 2021. Discretized
integrated gradients for explaining language models. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih, editors, Proceedings of the 2021 conference on empirical
methods in natural language processing, pages 10285–10299, Online;
Punta Cana, Dominican Republic. Association for Computational
Linguistics.
Naomi Saphra and Sarah Wiegreffe. 2024. Mechanistic?
In Yonatan Belinkov, Najoung Kim, Jaap Jumelet, Hosein Mohebbi, Aaron
Mueller, and Hanjie Chen, editors, Proceedings of the 7th
BlackboxNLP workshop: Analyzing and interpreting neural networks for
NLP, pages 480–498, Miami, Florida, US. Association for
Computational Linguistics.
Gabriele Sarti, Arianna Bisazza, Ana Guerberof-Arenas, and Antonio
Toral. 2022. DivEMT:
Neural machine translation post-editing effort across typologically
diverse languages. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 conference on empirical
methods in natural language processing, pages 7795–7816, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
Gabriele Sarti, Tommaso Caselli, Arianna Bisazza, and Malvina Nissim.
2024a. EurekaRebus
- verbalized rebus solving with LLMs: A
CALAMITA challenge. In Felice Dell’Orletta, Alessandro
Lenci, Simonetta Montemagni, and Rachele Sprugnoli, editors,
Proceedings of the 10th italian conference on computational
linguistics (CLiC-it 2024), pages 1202–1208, Pisa, Italy. CEUR
Workshop Proceedings.
Gabriele Sarti, Tommaso Caselli, Malvina Nissim, and Arianna Bisazza.
2024b. Non verbis,
sed rebus: Large language models are weak solvers of
Italian rebuses. In Felice Dell’Orletta, Alessandro
Lenci, Simonetta Montemagni, and Rachele Sprugnoli, editors,
Proceedings of the 10th italian conference on computational
linguistics (CLiC-it 2024), pages 888–897, Pisa, Italy. CEUR
Workshop Proceedings.
Gabriele Sarti, Grzegorz Chrupała, Malvina Nissim, and Arianna Bisazza.
2024c. Quantifying
the plausibility of context reliance in neural machine translation.
In The twelfth international conference on learning representations
(ICLR 2024), Vienna, Austria. OpenReview.
Gabriele Sarti, Nils Feldhus, Jirui Qi, Malvina Nissim, and Arianna
Bisazza. 2024d. Democratizing advanced
attribution analyses of generative language models with the inseq
toolkit. In xAI-2024 late-breaking work, demos and doctoral
consortium joint proceedings, pages 289–296, Valletta, Malta.
CEUR.org.
Gabriele Sarti, Nils Feldhus, Ludwig Sickert, Oskar van der Wal, Malvina
Nissim, and Arianna Bisazza. 2023a. Inseq: An
interpretability toolkit for sequence generation models. In Danushka
Bollegala, Ruihong Huang, and Alan Ritter, editors, Proceedings of
the 61st annual meeting of the association for computational linguistics
(volume 3: System demonstrations), pages 421–435, Toronto, Canada.
Association for Computational Linguistics.
Gabriele Sarti, Phu Mon Htut, Xing Niu, Benjamin Hsu, Anna Currey,
Georgiana Dinu, and Maria Nadejde. 2023b. RAMP:
Retrieval and attribute-marking enhanced prompting for
attribute-controlled translation. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st
annual meeting of the association for computational linguistics (volume
2: Short papers), pages 1476–1490, Toronto, Canada. Association for
Computational Linguistics.
Gabriele Sarti and Malvina Nissim. 2024. IT5:
Text-to-text pretraining for Italian language understanding
and generation. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors,
Proceedings of the 2024 joint international conference on
computational linguistics, language resources and evaluation
(LREC-COLING 2024), pages 9422–9433, Torino, Italia. ELRA; ICCL.
Gabriele Sarti, Vilém Zouhar, Grzegorz Chrupała, Ana Guerberof-Arenas,
Malvina Nissim, and Arianna Bisazza. 2025a. QE4PE: Word-level quality
estimation for human post-editing. Transactions of the
Association for Computational Linguistics, 13:1410–1435.
Gabriele Sarti, Vilém Zouhar, Malvina Nissim, and Arianna Bisazza.
2025b. Unsupervised
word-level quality estimation for machine translation through the lens
of annotators (dis)agreement. In Christos Christodoulopoulos, Tanmoy
Chakraborty, Carolyn Rose, and Violet Peng, editors, Proceedings of
the 2025 conference on empirical methods in natural language
processing, pages 18320–18337, Suzhou, China. Association for
Computational Linguistics.
Danielle Saunders and Bill Byrne. 2020. Reducing gender
bias in neural machine translation as a domain adaptation problem.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,
editors, Proceedings of the 58th annual meeting of the association
for computational linguistics, pages 7724–7736, Online. Association
for Computational Linguistics.
Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Matteo Negri, and Marco
Turchi. 2021. Gender bias
in machine translation. Transactions of the Association for
Computational Linguistics, 9:845–874.
Beatrice Savoldi, Alan Ramponi, Matteo Negri, and Luisa Bentivogli.
2025. Translation in the
hands of many: Centering lay users in machine translation
interactions.
Daniel Scalena, Gabriele Sarti, and Malvina Nissim. 2024. Multi-property
steering of large language models with dynamic activation
composition. In Yonatan Belinkov, Najoung Kim, Jaap Jumelet, Hosein
Mohebbi, Aaron Mueller, and Hanjie Chen, editors, Proceedings of the
7th BlackboxNLP workshop: Analyzing and interpreting neural networks for
NLP, pages 577–603, Miami, Florida, US. Association for
Computational Linguistics.
Daniel Scalena^*, Gabriele Sarti^*, Arianna Bisazza, Elisabetta Fersini,
and Malvina Nissim. 2025. Steering large language models
for machine translation personalization. Arxiv Preprint.
Andrea Schioppa, David Vilar, Artem Sokolov, and Katja Filippova. 2021.
Controlling
machine translation for multiple attributes with additive
interventions. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021
conference on empirical methods in natural language processing,
pages 6676–6696, Online; Punta Cana, Dominican Republic. Association for
Computational Linguistics.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. 2017. Proximal policy
optimization algorithms.
Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, Armand
Joulin, and Angela Fan. 2021. CCMatrix:
Mining billions of high-quality parallel sentences on the web. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,
Proceedings of the 59th annual meeting of the association for
computational linguistics and the 11th international joint conference on
natural language processing (volume 1: Long papers), pages
6490–6500, Online. Association for Computational Linguistics.
Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT:
Learning robust metrics for text generation. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of
the 58th annual meeting of the association for computational
linguistics, pages 7881–7892, Online. Association for Computational
Linguistics.
Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Controlling politeness in
neural machine translation via side constraints. In Kevin Knight,
Ani Nenkova, and Owen Rambow, editors, Proceedings of the 2016
conference of the north American chapter of the association
for computational linguistics: Human language technologies, pages
35–40, San Diego, California. Association for Computational Linguistics.
Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural machine translation
of rare words with subword units. In Katrin Erk and Noah A. Smith,
editors, Proceedings of the 54th annual meeting of the association
for computational linguistics (volume 1: Long papers), pages
1715–1725, Berlin, Germany. Association for Computational Linguistics.
Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu,
Lucius Bushnaq, Nicholas Goldowsky-Dill, Stefan Heimersheim, Alejandro
Ortega, Joseph Bloom, Stella Biderman, Adria Garriga-Alonso, Arthur
Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi Schoots,
Joseph Miller, Eric J. Michaud, et al. 2025. Open problems in mechanistic
interpretability.
Raksha Shenoy, Nico Herbig, Antonio Krüger, and Josef van Genabith.
2021. Investigating the
helpfulness of word-level quality estimation for post-editing machine
translation output. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021
conference on empirical methods in natural language processing,
pages 10173–10185, Online; Punta Cana, Dominican Republic. Association
for Computational Linguistics.
Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed
Chi, Nathanael Schärli, and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Proceedings of the
40th international conference on machine learning, Honolulu,
Hawaii, USA. JMLR.org.
Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning
important features through propagating activation differences. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
international conference on machine learning, volume 70, pages
3145–3153. PMLR.
Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
In Yoshua Bengio and Yann LeCun, editors, 2nd international
conference on learning representations, (ICLR), Banff,
AB, Canada.
Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, and Adina
Williams. 2021. UnNatural
Language Inference. In Chengqing Zong, Fei
Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the
59th annual meeting of the association for computational linguistics and
the 11th international joint conference on natural language processing
(volume 1: Long papers), pages 7329–7346, Online. Association for
Computational Linguistics.
Leon Sixt, Maximilian Granz, and Tim Landgraf. 2020. When explanations
lie: Why many modified BP attributions fail. In Hal
Daumé III and Aarti Singh, editors, Proceedings of the 37th
international conference on machine learning, volume 119, pages
9046–9057. PMLR.
Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. 2017. SmoothGrad:
Removing noise by adding noise.
Paul Smolensky. 1986. Neural and conceptual interpretation of PDP
models.
Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John
Makhoul. 2006. A
study of translation edit rate with targeted human annotation. In
Proceedings of the 7th conference of the association for machine
translation in the americas: Technical papers, pages 223–231,
Cambridge, Massachusetts, USA. Association for Machine Translation in
the Americas.
Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. 2008. Cheap and fast –
but is it good? Evaluating non-expert annotations for natural language
tasks. In Mirella Lapata and Hwee Tou Ng, editors, Proceedings
of the 2008 conference on empirical methods in natural language
processing, pages 254–263, Honolulu, Hawaii. Association for
Computational Linguistics.
Lucia Specia, Frédéric Blain, Marina Fomicheva, Erick Fonseca, Vishrav
Chaudhary, Francisco Guzmán, and André F. T. Martins. 2020. Findings of the
WMT 2020 shared task on quality estimation. In Loïc
Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R.
Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette
Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki
Nagata, Toshiaki Nakazawa, et al., editors, Proceedings of the fifth
conference on machine translation, pages 743–764, Online.
Association for Computational Linguistics.
Lucia Specia, Carolina Scarton, Gustavo Henrique Paetzold, and Graeme
Hirst. 2018. Quality estimation for machine translation. Morgan
& Claypool Publishers.
Lucia Specia, Marco Turchi, Nicola Cancedda, Nello Cristianini, and Marc
Dymetman. 2009. Estimating the
sentence-level quality of machine translation systems. In Lluís
Màrquez and Harold Somers, editors, Proceedings of the 13th annual
conference of the european association for machine translation,
Barcelona, Spain. European Association for Machine Translation.
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958.
Gabriel Stanovsky, Noah A. Smith, and Luke Zettlemoyer. 2019. Evaluating gender bias in
machine translation. In Anna Korhonen, David Traum, and Lluís
Màrquez, editors, Proceedings of the 57th annual meeting of the
association for computational linguistics, pages 1679–1684,
Florence, Italy. Association for Computational Linguistics.
Maria Stasimioti and Vilelmini Sosoni. 2020. Translation vs
post-editing of NMT output: Insights from the
English-Greek language pair. In John E.
Ortega, Marcello Federico, Constantin Orasan, and Maja Popovic, editors,
Proceedings of 1st workshop on post-editing in modern-day
translation, pages 109–124, Virtual. Association for Machine
Translation in the Americas.
Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Belinkov, Xingyi Song,
Mrinmaya Sachan, and Neel Nanda. 2024. Confidence
regulation neurons in language models. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors,
Advances in neural information processing systems, volume 37,
pages 125019–125049. Curran Associates, Inc.
Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng
Liu. 2024. RoFormer: Enhanced
transformer with rotary position embedding. Neurocomputing,
568:127063.
Jiao Sun, Swabha Swayamdipta, Jonathan May, and Xuezhe Ma. 2022. Investigating
the benefits of free-form rationales. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Findings of the association for
computational linguistics: EMNLP 2022, pages 5867–5882, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic
attribution for deep networks. In Proceedings of the 34th
international conference on machine learning (ICML), volume 70,
pages 3319–3328, Sydney, Australia. Journal of Machine Learning Research
(JMLR).
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to
sequence learning with neural networks. In Proceedings of the 28th
international conference on neural information processing systems -
volume 2, pages 3104–3112, Cambridge, MA, USA. MIT Press.
Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky. 2022. Prompt-and-rerank:
A method for zero-shot and few-shot arbitrary textual style transfer
with small language models. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang, editors, Proceedings of the 2022 conference on empirical
methods in natural language processing, pages 2195–2222, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
Aleš Tamchyna. 2021. Deploying
MT quality estimation on a large scale: Lessons learned and
open questions. In Janice Campbell, Ben Huyck, Stephen Larocca, Jay
Marciano, Konstantin Savenkov, and Alex Yanishevsky, editors,
Proceedings of machine translation summit XVIII: Users and providers
track, pages 291–305, Virtual. Association for Machine Translation
in the Americas.
Joel Tang, Marina Fomicheva, and Lucia Specia. 2022. Reducing hallucinations in
neural machine translation with feature attribution. ArXiv.
Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, and Angela Fan. 2021. Multilingual
translation from denoising pre-training. In Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli, editors, Findings of the association
for computational linguistics: ACL-IJCNLP 2021, pages 3450–3466,
Online. Association for Computational Linguistics.
Gemma Team. 2024a. Gemma 2:
Improving open language models at a practical size. Arxiv.
Llama Team. 2024b. The llama
3 herd of models. Arxiv.
Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT
rediscovers the classical NLP pipeline. In Anna
Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of
the 57th annual meeting of the association for computational
linguistics, pages 4593–4601, Florence, Italy. Association for
Computational Linguistics.
Ian Tenney, Ryan Mullins, Bin Du, Shree Pandya, Minsuk Kahng, and Lucas
Dixon. 2024. Interactive
prompt debugging with sequence salience. Arxiv.
Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy
Coenen, Sebastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey
Radebaugh, Emily Reif, and Ann Yuan. 2020. The language
interpretability tool: Extensible, interactive visualizations and
analysis for NLP models. In Qun Liu and David
Schlangen, editors, Proceedings of the 2020 conference on empirical
methods in natural language processing: System demonstrations,
pages 107–118, Online. Association for Computational Linguistics.
Katherine Thai, Marzena Karpinska, Kalpesh Krishna, Bill Ray, Moira
Inghilleri, John Wieting, and Mohit Iyyer. 2022. Exploring
document-level literary machine translation with parallel paragraphs
from world literature. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 conference on empirical
methods in natural language processing, pages 9882–9902, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
Brian Thompson and Matt Post. 2020. Automatic machine
translation evaluation in many languages via zero-shot paraphrasing.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors,
Proceedings of the 2020 conference on empirical methods in natural
language processing (EMNLP), pages 90–121, Online. Association for
Computational Linguistics.
Jörg Tiedemann. 2020. The tatoeba translation
challenge – realistic data sets for low resource and
multilingual MT. In Loïc Barrault, Ondřej Bojar, Fethi
Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins,
Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, et
al., editors, Proceedings of the fifth conference on machine
translation, pages 1174–1182, Online. Association for Computational
Linguistics.
Jörg Tiedemann and Yves Scherrer. 2017. Neural machine translation
with extended context. In Bonnie Webber, Andrei Popescu-Belis, and
Jörg Tiedemann, editors, Proceedings of the third workshop on
discourse in machine translation, pages 82–92, Copenhagen, Denmark.
Association for Computational Linguistics.
Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-MT
– building open translation services for the world. In
André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando
Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi,
Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg,
and Mikel L. Forcada, editors, Proceedings of the 22nd annual
conference of the european association for machine translation,
pages 479–480, Lisboa, Portugal. European Association for Machine
Translation.
Curt Tigges, Oskar J. Hollinsworth, Atticus Geiger, and Neel Nanda.
2024. Language models
linearly represent sentiment. In Yonatan Belinkov, Najoung Kim, Jaap
Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen, editors,
Proceedings of the 7th BlackboxNLP workshop: Analyzing and
interpreting neural networks for NLP, pages 58–87, Miami, Florida,
US. Association for Computational Linguistics.
Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C.
Wallace, and David Bau. 2024. Function vectors in
large language models. In Proceedings of the 2024 international
conference on learning representations.
Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way. 2018a. Attaining the unattainable?
Reassessing claims of human parity in neural machine translation. In
Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt
Post, Lucia Specia, Marco Turchi, and Karin Verspoor, editors,
Proceedings of the third conference on machine translation: Research
papers, pages 113–123, Brussels, Belgium. Association for
Computational Linguistics.
Antonio Toral and Andy Way. 2015. Translating literary text
between related languages using SMT. In Anna Feldman,
Anna Kazantseva, Stan Szpakowicz, and Corina Koolen, editors,
Proceedings of the fourth workshop on computational linguistics for
literature, pages 123–132, Denver, Colorado, USA. Association for
Computational Linguistics.
Antonio Toral and Andy Way. 2018. What level of
quality can neural machine translation attain on literary text? In
Translation quality assessment: From principles to practice,
pages 263–287. Springer International Publishing, Cham.
Antonio Toral, Martijn Wieling, and Andy Way. 2018b. Post-editing effort of a
novel with statistical and neural machine translation. Frontiers
in Digital Humanities, 5:1–11.
Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad
Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cristian
Cantòn Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. ArXiv.
Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif
Rasul, Younes Belkada, Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexander M.
Rush, and Thomas Wolf. 2024. Zephyr:
Direct distillation of LM alignment. In Proceedings of the 1st
conference on language modeling (COLM).
Marco Turchi, Antonios Anastasopoulos, José G. C. de Souza, and Matteo
Negri. 2014. Adaptive
quality estimation for machine translation. In Kristina Toutanova
and Hua Wu, editors, Proceedings of the 52nd annual meeting of the
association for computational linguistics (volume 1: Long papers),
pages 710–720, Baltimore, Maryland. Association for Computational
Linguistics.
Marco Turchi, Matteo Negri, M. Amin Farajian, and Marcello Federico.
2017. Continuous
learning from human post-edits for neural machine translation.
The Prague Bulletin of Mathematical Linguistics, 108:233–244.
Marco Turchi, Matteo Negri, and Marcello Federico. 2013. Coping with the subjectivity
of human judgements in MT quality estimation. In Ondrej
Bojar, Christian Buck, Chris Callison-Burch, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Herve Saint-Amand, Radu Soricut, and
Lucia Specia, editors, Proceedings of the eighth workshop on
statistical machine translation, pages 240–251, Sofia, Bulgaria.
Association for Computational Linguistics.
Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. 2023.
Language models don’t always say what they think: Unfaithful
explanations in chain-of-thought prompting. In Proceedings of the
37th international conference on neural information processing
systems, Red Hook, NY, USA. Curran Associates Inc.
Dennis Ulmer, Jes Frellsen, and Christian Hardmeier. 2022. Exploring
predictive uncertainty and calibration in NLP: A study on
the impact of method & data scarcity. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Findings of the
association for computational linguistics: EMNLP 2022, pages
2707–2735, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.
Alexandra N Uma, Tommaso Fornaciari, Dirk Hovy, Silviu Paun, Barbara
Plank, and Massimo Poesio. 2021. Learning from disagreement: A survey.
Journal of Artificial Intelligence Research, 72:1385–1470.
Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D’souza,
Gbemileke Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr
Kayid, Freddie Vargus, Phil Blunsom, Shayne Longpre, Niklas Muennighoff,
Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. 2024. Aya model: An
instruction finetuned open-access multilingual language model. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings
of the 62nd annual meeting of the association for computational
linguistics (volume 1: Long papers), pages 15894–15939, Bangkok,
Thailand. Association for Computational Linguistics.
Keyon Vafa, Yuntian Deng, David Blei, and Alexander Rush. 2021. Rationales for
sequential predictions. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the
2021 conference on empirical methods in natural language
processing, pages 10314–10332, Online; Punta Cana, Dominican
Republic. Association for Computational Linguistics.
Jannis Vamvas and Rico Sennrich. 2021a. Contrastive
conditioning for assessing disambiguation in MT:
A case study of distilled bias. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 conference on empirical methods in natural
language processing, pages 10246–10265, Online; Punta Cana,
Dominican Republic. Association for Computational Linguistics.
Jannis Vamvas and Rico Sennrich. 2021b. On the limits of
minimal pairs in contrastive evaluation. In Jasmijn Bastings,
Yonatan Belinkov, Emmanuel Dupoux, Mario Giulianelli, Dieuwke Hupkes,
Yuval Pinter, and Hassan Sajjad, editors, Proceedings of the fourth
BlackboxNLP workshop on analyzing and interpreting neural networks for
NLP, pages 58–68, Punta Cana, Dominican Republic. Association for
Computational Linguistics.
Jannis Vamvas and Rico Sennrich. 2022. As little as
possible, as much as necessary: Detecting over- and undertranslations
with contrastive conditioning. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th annual
meeting of the association for computational linguistics (volume 2:
Short papers), pages 490–500, Dublin, Ireland. Association for
Computational Linguistics.
Eva Vanmassenhove, Christian Hardmeier, and Andy Way. 2018. Getting gender right in
neural machine translation. In Ellen Riloff, David Chiang, Julia
Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018
conference on empirical methods in natural language processing,
pages 3003–3008, Brussels, Belgium. Association for Computational
Linguistics.
Vladimir N. Vapnik. 1995. The nature of statistical learning
theory. Springer-Verlag New York, Inc.
Helena Vasconcelos, Gagan Bansal, Adam Fourney, Q. Vera Liao, and
Jennifer Wortman Vaughan. 2025. Generation probabilities are not
enough: Uncertainty highlighting in AI code completions. ACM
Trans. Comput.-Hum. Interact., 32(1).
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
neural information processing systems, volume 30. Curran
Associates, Inc.
David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo, Viresh Ratnakar,
and George Foster. 2023. Prompting
PaLM for translation: Assessing strategies and
performance. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st annual meeting of the association
for computational linguistics (volume 1: Long papers), pages
15406–15427, Toronto, Canada. Association for Computational Linguistics.
Rob Voigt and Dan Jurafsky. 2012. Towards a literary machine
translation: The role of referential cohesion. In David Elson, Anna
Kazantseva, Rada Mihalcea, and Stan Szpakowicz, editors, Proceedings
of the NAACL-HLT 2012 workshop on
computational linguistics for literature, pages 18–25,
Montréal, Canada. Association for Computational
Linguistics.
Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. Context-aware monolingual
repair for neural machine translation. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
conference on empirical methods in natural language processing and the
9th international joint conference on natural language processing
(EMNLP-IJCNLP), pages 877–886, Hong Kong, China. Association for
Computational Linguistics.
Elena Voita, Rico Sennrich, and Ivan Titov. 2019b. When a good translation is
wrong in context: Context-aware machine translation improves on deixis,
ellipsis, and lexical cohesion. In Anna Korhonen, David Traum, and
Lluís Màrquez, editors, Proceedings of the 57th annual meeting of
the association for computational linguistics, pages 1198–1212,
Florence, Italy. Association for Computational Linguistics.
Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Analyzing the source
and target contributions to predictions in neural machine
translation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Proceedings of the 59th annual meeting of the
association for computational linguistics and the 11th international
joint conference on natural language processing (volume 1: Long
papers), pages 1126–1140, Online. Association for Computational
Linguistics.
Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. 2018. Context-aware neural machine
translation learns anaphora resolution. In Iryna Gurevych and Yusuke
Miyao, editors, Proceedings of the 56th annual meeting of the
association for computational linguistics (volume 1: Long papers),
pages 1264–1274, Melbourne, Australia. Association for Computational
Linguistics.
Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov.
2019c. Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the
rest can be pruned. In Anna Korhonen, David Traum, and Lluís
Màrquez, editors, Proceedings of the 57th annual meeting of the
association for computational linguistics, pages 5797–5808,
Florence, Italy. Association for Computational Linguistics.
Elizabeth Wagner. 1983. Rapid post-editing of
systran. In Veronica Lawson, editor, Proceedings of translating
and the computer 5: Tools for the trade, London, UK. Aslib.
Eric Wallace, Matt Gardner, and Sameer Singh. 2020. Interpreting
predictions of NLP models. In Aline Villavicencio and
Benjamin Van Durme, editors, Proceedings of the 2020 conference on
empirical methods in natural language processing: Tutorial
abstracts, pages 20–23, Online. Association for Computational
Linguistics.
Longyue Wang, Siyou Liu, Chenyang Lyu, Wenxiang Jiao, Xing Wang, Jiahao
Xu, Zhaopeng Tu, Yan Gu, Weiyu Chen, Minghao Wu, Liting Zhou, Philipp
Koehn, Andy Way, and Yulin Yuan. 2024a. Findings of the
WMT 2024 shared task on discourse-level literary
translation. In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof
Monz, editors, Proceedings of the ninth conference on machine
translation, pages 699–700, Miami, Florida, USA. Association for
Computational Linguistics.
Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang, Dian Yu, Shuming
Shi, and Zhaopeng Tu. 2023a. Document-level
machine translation with large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
conference on empirical methods in natural language processing,
pages 16646–16661, Singapore. Association for Computational Linguistics.
Longyue Wang, Zhaopeng Tu, Yan Gu, Siyou Liu, Dian Yu, Qingsong Ma,
Chenyang Lyu, Liting Zhou, Chao-Hong Liu, Yufeng Ma, Weiyu Chen, Yvette
Graham, Bonnie Webber, Philipp Koehn, Andy Way, Yulin Yuan, and Shuming
Shi. 2023b. Findings
of the WMT 2023 shared task on discourse-level literary
translation: A fresh orb in the cosmos of LLMs. In
Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors,
Proceedings of the eighth conference on machine translation,
pages 55–67, Singapore. Association for Computational Linguistics.
Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney.
2016. CharacTer:
Translation edit rate on character level. In Ondřej Bojar, Christian
Buck, Rajen Chatterjee, Christian Federmann, Liane Guillou, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Aurélie Névéol, Mariana
Neves, Pavel Pecina, Martin Popel, Philipp Koehn, Christof Monz, Matteo
Negri, Matt Post, Lucia Specia, Karin Verspoor, Jörg Tiedemann, et al.,
editors, Proceedings of the first conference on machine translation:
Volume 2, shared task papers, pages 505–510, Berlin, Germany.
Association for Computational Linguistics.
Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. MINILM:
Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. In Proceedings of the 34th
international conference on neural information processing systems,
Red Hook, NY, USA. Curran Associates Inc.
Yifan Wang, Zewei Sun, Shanbo Cheng, Weiguo Zheng, and Mingxuan Wang.
2023c. Controlling
styles in neural machine translation with activation prompt. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of
the association for computational linguistics: ACL 2023, pages
2606–2620, Toronto, Canada. Association for Computational Linguistics.
Yue Wang, Cuong Hoang, and Marcello Federico. 2021. Towards modeling
the style of translators in neural machine translation. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz
Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou, editors, Proceedings of the 2021 conference of the north
american chapter of the association for computational linguistics: Human
language technologies, pages 1193–1199, Online. Association for
Computational Linguistics.
Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov,
Akim Tsvigun, Osama Mohammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
and Thomas Arnold. 2024b. SemEval-2024
task 8: Multidomain, multimodel and multilingual machine-generated text
detection. In Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar
Madabushi, Giovanni Da San Martino, Sara Rosenthal, and Aiala Rosá,
editors, Proceedings of the 18th international workshop on semantic
evaluation (SemEval-2024), pages 2057–2079, Mexico City, Mexico.
Association for Computational Linguistics.
Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov,
Akim Tsvigun, Osama Mohammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Alham Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024c. M4GT-bench:
Evaluation benchmark for black-box machine-generated text detection.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Proceedings of the 62nd annual meeting of the association for
computational linguistics (volume 1: Long papers), pages 3964–3992,
Bangkok, Thailand. Association for Computational Linguistics.
Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng,
Sheng-Fu Wang, and Samuel R. Bowman. 2020. BLiMP:
The benchmark of linguistic minimal pairs for English.
Transactions of the Association for Computational Linguistics,
8:377–392.
Leon Weber-Genzel, Siyao Peng, Marie-Catherine De Marneffe, and Barbara
Plank. 2024. VariErr
NLI: Separating annotation error from human label
variation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Proceedings of the 62nd annual meeting of the association
for computational linguistics (volume 1: Long papers), pages
2256–2269, Bangkok, Thailand. Association for Computational Linguistics.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-thought
prompting elicits reasoning in large language models. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in neural information processing systems, volume 35,
pages 24824–24837. Curran Associates, Inc.
Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. 2018. Constructing datasets for
multi-hop reading comprehension across documents. Transactions
of the Association for Computational Linguistics, 6:287–302.
John S. White, Theresa A. O’Connell, and Francis E. O’Mara. 1994. The ARPA
MT evaluation methodologies: Evolution, lessons, and future
approaches. In Proceedings of the first conference of the
association for machine translation in the americas, Columbia,
Maryland, USA.
Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not
explanation. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan, editors, Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th international joint
conference on natural language processing (EMNLP-IJCNLP), pages
11–20, Hong Kong, China. Association for Computational Linguistics.
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, et
al. 2020. Transformers:
State-of-the-art natural language processing. In Qun Liu and David
Schlangen, editors, Proceedings of the 2020 conference on empirical
methods in natural language processing: System demonstrations,
pages 38–45, Online. Association for Computational Linguistics.
Minghao Wu, Jiahao Xu, Yulin Yuan, Gholamreza Haffari, Longyue Wang,
Weihua Luo, and Kaifu Zhang. 2025. (Perhaps) beyond
human translation: Harnessing multi-agent collaboration for translating
ultra-long literary texts. Arxiv.
Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky,
Christopher D. Manning, and Christopher Potts. 2024. ReFT:
Representation finetuning for language models. In A. Globerson, L.
Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,
editors, Advances in neural information processing systems,
volume 37, pages 63908–63962. Curran Associates, Inc.
Aris Xanthos, Sabine Laaha, Steven Gillis, Ursula Stephany, Ayhan
Aksu-Koç, Anastasia Christofidou, Natalia Gagarina, Gordana Hrzica, F.
Nihan Ketrez, Marianne Kilani-Schoch, Katharina Korecky-Kröll, Melita
Kovačević, Klaus Laalo, Marijan Palmović, Barbara Pfeiler, Maria D.
Voeikova, and Wolfgang U. Dressler. 2011. On the role of
morphological richness in the early development of noun and verb
inflection. First Language, 31(4):461–479.
Fangyuan Xu, Yixiao Song, Mohit Iyyer, and Eunsol Choi. 2023a. A critical
evaluation of evaluations for long-form question answering. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings
of the 61st annual meeting of the association for computational
linguistics (volume 1: Long papers), pages 3225–3245, Toronto,
Canada. Association for Computational Linguistics.
Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. 2024. A paradigm shift in
machine translation: Boosting translation performance of large language
models. In The twelfth international conference on learning
representations.
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual attention. In
Francis Bach and David Blei, editors, Proceedings of the 32nd
international conference on machine learning, volume 37, pages
2048–2057, Lille, France. PMLR.
Weijia Xu, Sweta Agrawal, Eleftheria Briakou, Marianna J. Martindale,
and Marine Carpuat. 2023b. Understanding and detecting
hallucinations in neural machine translation via model
introspection. Transactions of the Association for Computational
Linguistics, 11:546–564.
Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou,
Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. MT5:
A massively multilingual pre-trained text-to-text transformer. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur,
Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou, editors, Proceedings of the 2021 conference of the
north american chapter of the association for computational linguistics:
Human language technologies, pages 483–498, Online. Association for
Computational Linguistics.
Zhen Yang, Fandong Meng, Yuanmeng Yan, and Jie Zhou. 2023. Rethinking the
word-level quality estimation for machine translation from human
judgement. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Findings of the association for computational linguistics:
ACL 2023, pages 2012–2025, Toronto, Canada. Association for
Computational Linguistics.
Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen,
Ruslan Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA:
A dataset for diverse, explainable multi-hop question answering. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii,
editors, Proceedings of the 2018 conference on empirical methods in
natural language processing, pages 2369–2380, Brussels, Belgium.
Association for Computational Linguistics.
Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi Chaudhary, André F. T.
Martins, and Graham Neubig. 2021. Do context-aware
translation models pay the right attention? In Chengqing Zong, Fei
Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the
59th annual meeting of the association for computational linguistics and
the 11th international joint conference on natural language processing
(volume 1: Long papers), pages 788–801, Online. Association for
Computational Linguistics.
Kayo Yin and Graham Neubig. 2022. Interpreting
language models with contrastive explanations. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022
conference on empirical methods in natural language processing,
pages 184–198, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.
Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. 2024. Jump to conclusions:
Short-cutting transformers with linear transformations. In Nicoletta
Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani
Sakti, and Nianwen Xue, editors, Proceedings of the 2024 joint
international conference on computational linguistics, language
resources and evaluation (LREC-COLING 2024), pages 9615–9625,
Torino, Italia. ELRA; ICCL.
Wu Youyou, Michal Kosinski, and David Stillwell. 2015. Computer-based
personality judgments are more accurate than those made by humans.
Proceedings of the National Academy of Sciences,
112(4):1036–1040.
Xiang Yue, Boshi Wang, Ziru Chen, Kai Zhang, Yu Su, and Huan Sun. 2023.
Automatic
evaluation of attribution by large language models. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the
association for computational linguistics: EMNLP 2023, pages
4615–4635, Singapore. Association for Computational Linguistics.
Muhammad Bilal Zafar, Michele Donini, Dylan Slack, Cedric Archambeau,
Sanjiv Das, and Krishnaram Kenthapadi. 2021. On the lack of
robust interpretability of neural text classifiers. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Findings of
the association for computational linguistics: ACL-IJCNLP 2021,
pages 3730–3740, Online. Association for Computational Linguistics.
Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and
understanding convolutional networks. In David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, 13th european
conference on computer vision (ECCV), pages 818–833, Switzerland.
Springer International Publishing.
Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus. 2011. Adaptive
deconvolutional networks for mid and high level feature learning. In
2011 international conference on computer vision (ICCV), pages
2018–2025.
Chrysoula Zerva, Frederic Blain, José G. C. De Souza, Diptesh Kanojia,
Sourabh Deoghare, Nuno M. Guerreiro, Giuseppe Attanasio, Ricardo Rei,
Constantin Orasan, Matteo Negri, Marco Turchi, Rajen Chatterjee, Pushpak
Bhattacharyya, Markus Freitag, and André Martins. 2024. Findings of the quality
estimation shared task at WMT 2024: Are LLMs
closing the gap in QE? In Barry Haddow, Tom Kocmi,
Philipp Koehn, and Christof Monz, editors, Proceedings of the ninth
conference on machine translation, pages 82–109, Miami, Florida,
USA. Association for Computational Linguistics.
Chrysoula Zerva, Frédéric Blain, Ricardo Rei, Piyawat
Lertvittayakumjorn, José G. C. de Souza, Steffen Eger, Diptesh Kanojia,
Duarte Alves, Constantin Orăsan, Marina Fomicheva, André F. T. Martins,
and Lucia Specia. 2022. Findings of the
WMT 2022 shared task on quality estimation. In Philipp
Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee,
Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander
Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman,
Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André
Martins, Makoto Morishita, et al., editors, Proceedings of the
seventh conference on machine translation (WMT), pages 69–99, Abu
Dhabi, United Arab Emirates (Hybrid). Association for Computational
Linguistics.
Chrysoula Zerva and André F. T. Martins. 2024. Conformalizing machine
translation evaluation. Transactions of the Association for
Computational Linguistics, 12:1460–1478.
Biao Zhang and Rico Sennrich. 2019. Root mean square layer
normalization. In Proceedings of the 33rd international conference
on neural information processing systems, Red Hook, NY, USA. Curran
Associates Inc.
Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, Min
Zhang, and Yang Liu. 2018. Improving the transformer
translation model with document-level context. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 conference on empirical methods in natural
language processing, pages 533–542, Brussels, Belgium. Association
for Computational Linguistics.
Peng Zhang, Zhengqing Guan, Baoxi Liu, Xianghua (Sharon) Ding, Tun Lu,
Hansu Gu, and Ning Gu. 2022. Building user-oriented
personalized machine translator based on user-generated textual
content. Proc. ACM Hum.-Comput. Interact., 6(CSCW2).
Mengjie Zhao and Hinrich Schütze. 2021. Discrete and soft
prompting for multilingual models. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of
the 2021 conference on empirical methods in natural language
processing, pages 8547–8555, Online; Punta Cana, Dominican
Republic. Association for Computational Linguistics.
Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi Narayan, Mohammad
Saleh, and Peter J Liu. 2023. Calibrating sequence
likelihood improves conditional language generation. In The
eleventh international conference on learning representations.
Yu Zhao, Alessio Devoto, Giwon Hong, Xiaotang Du, Aryo Pradipta Gema,
Hongru Wang, Xuanli He, Kam-Fai Wong, and Pasquale Minervini. 2025. Steering knowledge
selection behaviours in LLMs via SAE-based
representation engineering. In Luis Chiruzzo, Alan Ritter, and Lu
Wang, editors, Proceedings of the 2025 conference of the nations of
the americas chapter of the association for computational linguistics:
Human language technologies (volume 1: Long papers), pages
5117–5136, Albuquerque, New Mexico. Association for Computational
Linguistics.
Zhixue Zhao and Boxuan Shan. 2024. ReAGent: A model-agnostic
feature attribution method for generative language models. AAAI
Workshop on Responsible Language Models (ReLM).
Meng Zhou, Xin Li, Yue Jiang, and Lidong Bing. 2023. Enhancing
cross-lingual prompting with dual prompt augmentation. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of
the association for computational linguistics: ACL 2023, pages
11008–11020, Toronto, Canada. Association for Computational Linguistics.
Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A monolingual tree-based
translation model for sentence simplification. In Chu-Ren Huang and
Dan Jurafsky, editors, Proceedings of the 23rd international
conference on computational linguistics (coling 2010), pages
1353–1361, Beijing, China. Coling 2010 Organizing Committee.
Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard
Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan Wang, Alex Mallen,
Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, et al. 2024. Enhancing neural
network transparency through representation analysis.
OpenReview.
Vilém Zouhar, Shuoyang Ding, Anna Currey, Tatyana Badeka, Jenyuan Wang,
and Brian Thompson. 2024. Fine-tuned machine
translation metrics struggle in unseen domains. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Proceedings of the 62nd annual
meeting of the association for computational linguistics (volume 2:
Short papers), pages 488–500, Bangkok, Thailand. Association for
Computational Linguistics.
Vilém Zouhar, Tom Kocmi, and Mrinmaya Sachan. 2025. AI-assisted
human evaluation of machine translation. In Luis Chiruzzo, Alan
Ritter, and Lu Wang, editors, Proceedings of the 2025 conference of
the nations of the americas chapter of the association for computational
linguistics: Human language technologies (volume 1: Long papers),
pages 4936–4950, Albuquerque, New Mexico. Association for Computational
Linguistics.
Vilém Zouhar, Michal Novák, Matúš Žilinec, Ondřej Bojar, Mateo Obregón,
Robin L. Hill, Frédéric Blain, Marina Fomicheva, Lucia Specia, and Lisa
Yankovskaya. 2021a. Backtranslation
feedback improves user confidence in MT, not quality.
In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou, editors, Proceedings of the 2021
conference of the north american chapter of the association for
computational linguistics: Human language technologies, pages
151–161, Online. Association for Computational Linguistics.
Vilém Zouhar, Martin Popel, Ondřej Bojar, and Aleš Tamchyna. 2021b. Neural machine
translation quality and post-editing performance. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 conference on empirical methods in natural
language processing, pages 10204–10214, Online; Punta Cana,
Dominican Republic. Association for Computational Linguistics.