Characterizing Linguistic Complexity in Humans and Language Models

Abstract

We investigate the relationship between two complementary perspectives in the human assessment of sentence complexity and how they are modeled in a neural language model (NLM). The first perspective takes into account multiple online behavioral metrics obtained from eye-tracking recordings. The second one concerns the offline perception of complexity measured by explicit human judgments. Using a broad spectrum of linguistic features modeling lexical, morpho-syntactic, and syntactic properties of sentences, we perform a comprehensive analysis of linguistic phenomena associated with the two complexity viewpoints and report similarities and differences. We then show the effectiveness of linguistic features when explicitly leveraged by a regression model for predicting sentence complexity and compare its results with the ones obtained by a fine-tuned neural language model. We finally probe the NLM’s linguistic competence before and after fine-tuning, highlighting how linguistic information encoded in representations changes when the model learns to predict complexity.

Date
Nov 5, 2021
Location
Online

Related