Selected Publications | Gabriele Sarti
Home
About me
Publications
Blog
Talks
Projects
Activities
CV
Communities
AI2S
AISIG
Selected Publications
Type
Conference paper
Journal article
Preprint
Thesis
Date
2024
2023
2022
2021
2020
Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses
We evaluate the rebus-solving capabilities of large language models on a new Italian dataset.
Published in: CLiC-it 2024
Gabriele Sarti
,
Tommaso Caselli
,
Arianna Bisazza
,
Malvina Nissim
PDF
Cite
Dataset
ArXiv
CALAMITA Challenge
Models & Dataset
Repository
Demo
Multi-property Steering of Large Language Models with Dynamic Activation Composition
We propose Dynamic Activation Composition, an adaptive approach for multi-property activation steering of LLMs
Published in: BlackboxNLP 2024
Daniel Scalena
,
Gabriele Sarti
,
Malvina Nissim
PDF
Cite
ArXiv
Repository
Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation
MIRAGE uses model internals for faithful answer attribution in retrieval-augmented generation applications.
Published in: EMNLP 2024
* Equal contribution
Jirui Qi*
,
Gabriele Sarti*
,
Raquel Fernández
,
Arianna Bisazza
PDF
Cite
Project
ArXiv
Demo
Repository
IT5: Text-to-text Pretraining for Italian Language Understanding and Generation
IT5s are the first encoder-decoder transformers pretrained on more than 40 billion Italian words.
Published in: LREC-COLING 2024
Gabriele Sarti
,
Malvina Nissim
PDF
Cite
Code
Dataset
ArXiv
Models
Demo
A Primer on the Inner Workings of Transformer-based Language Models
This primer provides a concise technical introduction to the current techniques used to interpret the inner workings of …
Published in: Arxiv
Javier Ferrando
,
Gabriele Sarti
,
Arianna Bisazza
,
Marta Costa-jussà
PDF
Cite
ArXiv
DecoderLens: Layerwise Interpretation of Encoder-Decoder Transformers
We propose DecoderLens, a method to interpret the iterative refinement of representations in encoder-decoder Transformer models.
Published in: Findings of NAACL 2024
Anna Langedijk
,
Hosein Mohebbi
,
Gabriele Sarti
,
Willem Zuidema
,
Jaap Jumelet
PDF
Cite
Paper
ArXiv
Hugging Face
Quantifying the Plausibility of Context Reliance in Neural Machine Translation
We introduce PECoRe, an interpretability framework for identifying context dependence in language model generations.
Published in: ICLR 2024
Gabriele Sarti
,
Grzegorz Chrupała
,
Malvina Nissim
,
Arianna Bisazza
PDF
Cite
Code
Project
ICLR Proceedings
ArXiv
Artifacts
Demo
RAMP: Retrieval and Attribute-Marking Enhanced Prompting for Attribute-Controlled Translation
We introduce Retrieval and Attribute-Marking enhanced Prompting (RAMP) to perform attribute-controlled MT with multilingual LLMs.
Published in: ACL 2023
Gabriele Sarti
,
Phu Mon Htut
,
Xing Niu
,
Benjamin Hsu
,
Anna Currey
,
Georgiana Dinu
,
Maria Nadejde
PDF
Cite
Proceedings
ArXiv
Are Character-level Translations Worth the Wait? Comparing ByT5 and mT5 for Machine Translation
We analyze input contributions of char-level MT models and show how they modulate word and character-level information.
Published in: TACL
Lukas Edman
,
Gabriele Sarti
,
Antonio Toral
,
Gertjan van Noord
,
Arianna Bisazza
PDF
Cite
Journal
ArXiv
Hugging Face
Inseq: An Interpretability Toolkit for Sequence Generation Models
We present Inseq, a Python library to democratize access to interpretability analyses of sequence generation models.
Published in: ACL Demo 2023
Gabriele Sarti
,
Nils Feldhus
,
Ludwig Sickert
,
Oskar van der Wal
,
Malvina Nissim
,
Arianna Bisazza
PDF
Cite
Project
Proceedings
ArXiv
Docs
Repository
PyPI
Twitter
Discord
Hugging Face
Tutorial
v0.6 Paper
Probing Linguistic Knowledge in Italian Neural Language Models across Language Varieties
We investigate whether and how using different architectures of probing models affects the performance of Italian transformers in …
Published in: CLiC-it 2020 & IJCoL
Alessio Miaschi
,
Gabriele Sarti
,
Dominique Brunato
,
Felice Dell’Orletta
,
Giulia Venturi
Cite
CLiC-it 2020
IJCoL 2022
DivEMT: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages
DivEMT is a publicly available post-editing study of Neural Machine Translation over a typologically diverse set of target languages.
Published in: EMNLP 2022
Gabriele Sarti
,
Arianna Bisazza
,
Ana Guerberof Arenas
,
Antonio Toral
PDF
Cite
Code
Dataset
Paper
ArXiv
Demo
Contrastive Language-Image Pre-training for the Italian Language
We present the first CLIP model for the Italian Language (CLIP-Italian), trained on more than 1.4 million image-text pairs.
Published in: CLiC-it 2023
Federico Bianchi
,
Giuseppe Attanasio
,
Raphael Pisoni
,
Silvia Terragni
,
Gabriele Sarti
PDF
Cite
Project
Paper
ArXiv
Model
Code
Demo
That Looks Hard: Characterizing Linguistic Complexity in Humans and Language Models
This paper investigates the relationship between two complementary perspectives in the human assessment of sentence complexity and how …
Published in: In CMCL 2021
Gabriele Sarti
,
Dominique Brunato
,
Felice Dell’Orletta
PDF
Cite
Code
DOI
Proceedings
Teaching NLP with Bracelets and Restaurant Menus: An Interactive Workshop for Italian Students
We developed an interactive workshop designed to illustrate the NLP and computational linguistics to Italian high schoolers.
Published in: In TeachingNLP 2021
Ludovica Pannitto
,
Lucia Busso
,
Claudia Roberta Combei
,
Lucio Messina
,
Alessio Miaschi
,
Gabriele Sarti
,
Malvina Nissim
PDF
Cite
Code
Video
DOI
Proceedings
Annex
UmBERTo-MTSA@ AcCompl-It: Improving Complexity and Acceptability Prediction with Multi-task Learning on Self-Supervised Annotations
This work describes a self-supervised data augmentation approach used to improve learning models’ performances when only a …
Published in: In EVALITA 2020
Gabriele Sarti
PDF
Cite
Code
Video
ArXiv
Interpreting Neural Language Models for Linguistic Complexity Assessment
This thesis presents a model-driven study of multiple phenomena associated with linguistic complexity, and how those get encoded by …
Published in: MSc Thesis @ UniTrieste
Gabriele Sarti
PDF
Cite
Code
Gitbook
ETC-NLG: End-to-end Topic-Conditioned Natural Language Generation
We present ETC-NLG, an approach leveraging topic modeling annotations to enable fully-unsupervised End-to-end Topic-Conditioned Natural …
Published in: IJCoL
Ginevra Carbone
,
Gabriele Sarti
PDF
Cite
Code
Video
ArXiv
Journal
Cite
×