After motivating the usage of interpretability methods in NLP, this talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated on two case studies related to gender bias in machine translation and locating factual knowledge withing GPT-2 representations.
With the astounding advances of artificial intelligence in recent years, interpretability research has emerged as a fundamental effort to ensure the development of robust and transparent AI systems aligned with human needs. This talk will focus on user-centric interpretability applications aimed at improving our understanding of machine translation systems, with the ultimate goal of improving post-editing productivity and enjoyability.
With the astounding advances of artificial intelligence in recent years, the field of interpretability research has emerged as a fundamental effort to ensure the development of robust AI systems aligned with human values. In this talk, two perspectives on AI interpretability will be presented alongside two case studies in natural language processing. The first study leverages behavioral data and probing tasks to study the perception and encoding of linguistic complexity in humans and language models. The second introduces a user-centric interpretability perspective for neural machine translation to improve post-editing productivity and enjoyability. The need for such application-driven approaches will be emphasized in light of current challenges in faithfully evaluating advances in this field of study.
Presenting my work on studying different metrics of linguistic complexity and how they correlate with linguistic phenomena and learned representations in neural language models