Sequence-to-Sequence | Gabriele Sarti

Sequence-to-Sequence

Explaining Neural Language Models from Internal Representations to Model Predictions

As language models become increasingly complex and sophisticated, the processes leading to their predictions are growing increasingly difficult to understand. Research in NLP interpretability focuses on explaining the rationales driving model predictions and is crucial for building trust and transparency in the usage of these systems in real-world scenarios. In this laboratory, we will explore various techniques for analyzing Neural Language Models, such as feature attribution methods and diagnostic classifiers. Besides common approaches to inspect models’ internal representations, we will also introduce prompting techniques to elicit model responses and motivate their usage as alternative methods for the behavioral study of model generations.

Post-hoc Interpretability for Neural Language Models

In recent years, Transformer-based language models have achieved remarkable progress in most language generation and understanding tasks. However, the internal computations of these models are hardly interpretable due to their highly nonlinear structure, hindering their usage for mission-critical applications requiring trustworthiness and transparency guarantees. This presentation will introduce interpretability methods used for tracing the predictions of language models back to their inputs and discuss how these can be used to gain insights into model biases and behaviors. Throughout the presentation, several concrete examples of language model attributions will be presented using the Inseq interpretability library.

Inseq: An Interpretability Toolkit for Sequence Generation Models

This talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated with examples introducing state-of-the-art approaches for interpreting language models such as contrastive attribution, tuned lenses and causal mediation analysis.

Advanced XAI Techniques and Inseq: An Interpretability Toolkit for Sequence Generation Models

This talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated with examples introducing state-of-the-art approaches for interpreting language models such as contrastive attribution, tuned lenses and causal mediation analysis.

Introducing Inseq: An Interpretability Toolkit for Sequence Generation Models

After motivating the usage of interpretability methods in NLP, this talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated on two case studies related to gender bias in machine translation and locating factual knowledge withing GPT-2 representations.

Towards User-centric Interpretability of Machine Translation Models

With the astounding advances of artificial intelligence in recent years, interpretability research has emerged as a fundamental effort to ensure the development of robust and transparent AI systems aligned with human needs. This talk will focus on user-centric interpretability applications aimed at improving our understanding of machine translation systems, with the ultimate goal of improving post-editing productivity and enjoyability.

Towards User-centric Interpretability of NLP Models

With the astounding advances of artificial intelligence in recent years, the field of interpretability research has emerged as a fundamental effort to ensure the development of robust AI systems aligned with human values. In this talk, two perspectives on AI interpretability will be presented alongside two case studies in natural language processing. The first study leverages behavioral data and probing tasks to study the perception and encoding of linguistic complexity in humans and language models. The second introduces a user-centric interpretability perspective for neural machine translation to improve post-editing productivity and enjoyability. The need for such application-driven approaches will be emphasized in light of current challenges in faithfully evaluating advances in this field of study.

Empowering Human Translators via Interpretable Interactive Neural Machine Translation

Discussing the potential applications of interpretability research to the field of neural machine translation.