With the astounding advances of artificial intelligence in recent years, the field of interpretability research has emerged as a fundamental effort to ensure the development of robust AI systems aligned with human values. In this talk, two perspectives on AI interpretability will be presented alongside two case studies in natural language processing. The first study leverages behavioral data and probing tasks to study the perception and encoding of linguistic complexity in humans and language models. The second introduces a user-centric interpretability perspective for neural machine translation to improve post-editing productivity and enjoyability. The need for such application-driven approaches will be emphasized in light of current challenges in faithfully evaluating advances in this field of study.
Presenting my work on studying different metrics of linguistic complexity and how they correlate with linguistic phenomena and learned representations in neural language models
This paper investigates the relationship between two complementary perspectives in the human assessment of sentence complexity and how they are modeled in a neural language model (NLM), highlighting how linguistic information encoded in representations changes when the model learns to predict complexity.
This thesis presents a model-driven study of multiple phenomena associated with linguistic complexity, and how those get encoded by neural language models' learned representations.
This work describes a self-supervised data augmentation approach used to improve learning models' performances when only a moderate amount of labeled data is available.
We present ETC-NLG, an approach leveraging topic modeling annotations to enable fully-unsupervised End-to-end Topic-Conditioned Natural Language Generation over emergent topics in unlabeled document collections.