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CHAPTER 1

Introduction

In recent years, language models have undergone a significant transformation, go-
ing from simple research prototypes producing barely coherent text to becoming a
cornerstone of modern technological infrastructure. This success stems in large part
from the remarkable ability of large neural networks such as the transformer (Vaswani
et al., 2017) to learn rich representations of language—and by extension, our world and
society—from staggering amounts of text. Yet, the complex and deeply intertwined
structure that renders these systems so powerful is also the main culprit behind their
opacity. The inner workings of neural networks remain notoriously difficult to inter-
pret, and the lack of transparency in their decision-making processes has raised serious
concerns about their reliability and fairness in high-stakes applications (Rudin, 2019).

These circumstances have led to a growing interest in interpretability— a field closely
aligned with the broader area of explainable artificial intelligence (XAI), which seeks to
develop methods and tools to understand how neural networks work and provide insights
into their decision-making processes (Doshi-Velez and Kim, 2017; Li et al., 2022).
In natural language processing (NLP), interpretability research has made significant
strides by uncovering how language models encode and process factual knowledge
and linguistic information (Tenney et al., 2019; Belinkov, 2022; Meng et al., 2022),
revealing their use of context during generation (Clark et al., 2019; Ferrando et al.,
2022b) and identifying the learned mechanisms underlying their capabilities (Elhage
et al., 2021; Saphra and Wiegreffe, 2024).

While interpretability insights have earned broad recognition and influence within
the NLP research community (Mosbach et al., 2024), critics have often pointed out
that these findings rarely translate into actionable improvements for real-world systems
(Riuker et al., 2023; Rai et al., 2024; Hendrycks and Hiscott, 2025). Most interpretability
work today focuses on identifying subnetworks and mechanisms responsible for specific
tasks inside language models (Ferrando et al., 2024; Sharkey et al., 2025), yet few
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2 1. Introduction

studies have put interpretability insights in relation to end-users’ needs and desires
(Ehsan et al., 2021), despite their crucial role in determining the practical usefulness of
interpretability findings (Ehsan et al., 2024). This disconnect stems from a fundamental
divide between research communities: most Al interpretability researchers pursue
theoretical understanding of complex systems, while human-computer interaction
(HCI) researchers prioritize actionable insights and practical applications.

A prime example of this disconnect can be found in the field of machine translation
(MT), a long-standing area of research within NLP. MT researchers pioneered the
use of neural language models for sequence generation tasks (Sutskever et al., 2014;
Bahdanau et al., 2015), and were among the first to analyze their inner workings
(Belinkov et al., 2017; Voita et al., 2019¢; Rogers et al., 2020). Yet, despite the significant
progress in the performance of MT systems across hundreds of languages over the past
decade, the field has been remarkably slow to bring interpretability insights to the users
of these systems, especially in the case of professional translators who work with these
systems on a daily basis. Users of “classic” translation tools such as Google Translate are,
to this day, simply presented with translations, without the possibility to personalize
their tone or properties, quantify the model uncertainty in its response, or identify
potential errors or alternative formulations. At the other extreme, when large language
models like GPT-4 (OpenAl, 2023) eagerly offer eloquent justifications alongside their
translations, these explanations may sound plausible but often fail to reflect the model’s
actual processing and context usage, resulting in plausible yet unfaithful rationalizations
(Turpin et al., 2023).

This dissertation aims to bridge the gap between method-centric interpretability re-
search and outcome-centric real-world machine translation applications. We develop
novel methods to understand and control language model generation, then study how
to integrate these advances effectively into human translation workflows. Our research
spans three interconnected macro-themes: (1) understanding how language models
exploit contextual information during generation, (2) controlling model generation
for personalized translation outputs, and (3) integrating interpretability insights into
human translation workflows. Our methodological contributions, empirical evalua-
tions, and user studies demonstrate how insights from interpretability research can lead
to meaningful impact in the way machine translation systems are used in real-world
translation workflows.
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Figure 1.1 | Chapter guide for the three parts of this dissertation.

1.1 Outline and Contributions

The experimental chapters of this dissertation are organized into three parts, each
addressing one of the research directions outlined above. Each part is composed of
multiple chapters, each presenting a self-contained contribution or study related to
the overarching theme. Figure 1.1 provides a visual overview of parts and chapters,
highlighting for each chapter the topics introduced in detail in Chapter 2. Below, we
summarize the contents, research questions and contributions of each part.

Part I: Attributing Context Usage in Multilingual NLP

Part I establishes the foundational infrastructure and methodological frameworks for
understanding how neural language models and machine translation systems process
contextual information during generation. We begin with Inseq (Chapter 3), a toolkit
that democratizes access to interpretability analyses of generative language models,
providing the foundation for our investigations into context usage. Then, Chapter 4
introduces PECORE, a data-driven framework for quantifying the plausibility of context
usage in language models through the contrastive identification of context-sensitive
tokens and contextual cues that influence their prediction. PECORE is used to study
context usage in context-aware machine translation systems, identifying failure cases
stemming from an incorrect usage of context. Chapter 5 extends this analysis to modern
large language models and retrieval-augmented generation settings with MIrage,
adapting the PECoRe framework to demonstrate how model internals enable faithful
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answer attribution in question answering. This part addresses two fundamental research
questions:

? Research Question 1 (RQ1)

What are the conceptual and technical requirements for interpretability software
tools enabling scalable and reproducible analyses into the inner workings of
generative language models?

? Research Question 2 (RQ2)

How do language models and machine translation systems exploit contextual
information during generation, and how can we quantify this usage in a faithful
manner?

Part I's primary contributions include: (1) two open-source releases of the Inseq inter-
pretability library; (2) the contrastive attribution tracing (CAT) method, a gradient-
based alternative to causal intervention for efficiently identifying salient model compo-
nents; (3) the PECoRe framework for context reliance attribution in language models,
enabling data-driven exploration of context usage patterns in context-aware MT sys-
tems; and (4) an extended evaluation of context attribution for retrieval-augmented
generation using MIRAGE, producing high quality citations of retrieved documents
while ensuring greater faithfulness to the model’s reasoning process.

Part II: Conditioning Generation for Personalized Machine Translation

Part II moves from understanding context usage to actively controlling model genera-
tion for customized translation outputs. Across two chapters, we explore two paradigms
to condition machine translation outputs—prompting-based methods and direct inter-
ventions in model processing—addressing the question:

? Research Question 3 (RQ3)

Are interpretability-based steering methods viable approaches for controllable
machine translation? How do they compare with prompting-based methods in
terms of their performance and their impact on models’ internal mechanisms?

Chapter 6 pioneers the usage of prompting-based strategies for attribute-controlled
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translation, while Chapter 7 connects generation conditioning to interpretability tech-
niques, expanding the scope of our analysis from simple attributes in common domains
to sophisticated personal styles in the challenging literary translation domain.

The core contributions of Part II include: (1) Ramp, a novel prompting methodol-
ogy achieving strong performance in attribute-controlled translation across multiple
languages and attributes without model fine-tuning; (2) the first comprehensive com-
parison of prompting versus interpretability-based steering for machine translation
personalization; (3) a novel contrastive steering method using sparse autoencoder latents
to achieve personalization accuracy comparable to prompting while preserving quality
in literary translation; and (4) evidence that prompting and steering methods con-
verge to similar mechanistic solutions, revealing fundamental principles of generation
conditioning.

Part III: Interpretability in Human Translation Workflows

Part III evaluates how interpretability insights can benefit human professionals who edit
machine-translated content in a practical sense. We begin with DIVEMT (Chapter 8), a
study investigating the effectiveness of professional MT post-editing across a diverse
set of mid-resourced languages, going beyond the one-size-fits-all analysis of high-
resourced translation directions. This allows us to establish our human evaluation setup,
providing valuable insights into the question:

? Research Question 4 (RQ4)

Does MT contribute positively to the productivity of professional translators
across different languages? Which factors influence its effectiveness?

Building upon these insights, our second large-scale study QE4PE (Chapter 9) investi-
gates how word-level error span highlights—including those derived from MT systems’
uncertainty during generation—impact the productivity of professional translators and
the quality of post-edited contents:

? Research Question 5 (RQ5)

How do word-level error highlights impact the productivity and editing choices
of professional translators and the quality of resulting translations?

Chapter 10 concludes our human-centered investigation with a deeper analysis of
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multiple uncertainty and interpretability-based word-level quality estimation methods.
Such analysis allows us to assess how the performance of such techniques varies across
different models, languages and human annotators:

? Research Question 6 (RQ6)

Can unsupervised error span detection methods reliably identify problems in
machine-translated outputs? How does human label variation affect their perfor-
mance, compared to traditional supervised approaches?

Part 111 contributions include (1) DIVEMT, a cross-lingual post-editing dataset en-
abling controlled comparison of translator productivity across editing modalities and
typologically diverse languages; (2) evidence that MT quality metrics fail to corre-
late with human post-editing productivity across languages, with productivity being
heavily influenced by source-target language relatedness; (3) QE4PE, a comprehensive
post-editing dataset containing error spans, behavioral editing metrics, and quality
annotations from 42 professional post-editors for two translation directions; (4) evidence
that error span highlights may reduce productivity but improve critical error detection;
and (5) evidence that unsupervised quality estimation methods based on model internals
can match state-of-the-art supervised approaches in both accuracy and downstream
usability, revealing how subjective editing choice impact the evaluation of error span
detection methods.

1.2 Scientific Output

This dissertation is the product of several research articles and open-source projects,
which are categorized in the following sections.

1.2.1 Main Publications

The following articles represent the main contributions reflected in this thesis’ experi-
mental chapters, organized in their respective parts:!

Introduction and Background

IShared first co-authorship is indicated by 1.
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* Ferrando, J., Sarti, G., Bisazza, A. and Costa-jussa, M. R. (2024). A Primer
on the Inner Workings of Transformer-based Language Models. Arxiv Preprint
(Chapter 2)

Part I: Attributing Context Usage in Multilingual NLP

* Sarti, G., Feldhus, N., Sickert, L., van der Wal, O., Nissim, M. and Bisazza, A.
(2023a). Inseq: An Interpretability Toolkit for Sequence Generation Models.
In Proc. of the 61st Annual Meeting of the Association for Computational Linguistics
(ACL Demo) (Chapter 3)

* Sarti, G., Feldhus, N., Qi, J., Nissim, M. and Bisazza, A. (2024d). Democratizing
Advanced Attribution Analyses of Generative Language Models with the Inseq
Toolkit. In Proc. of the 2nd World Conference on eXplainable Artificial Intelligence:
Late-breaking works and demos (xAI Demo) (Chapter 3 and Chapter 4)

* Sarti, G., Chrupata G., Nissim, M. and Bisazza, A. (2024c). Quantifying the
Plausibility of Context Reliance in Neural Machine Translation. In Proc. of the
12th International Conference on Learning Representations (ICLR) (Chapter 4)

* Qi,J.T, Sarti, G.T, Ferndndez, R. and Bisazza, A. (2024). Model Internals-based
Answer Attribution for Trustworthy Retrieval-Augmented Generation. In Proc. of
the 2024 Conference on Empirical Methods in Natural Language Processing (EMINLP)
(Chapter 5)

Part II: Conditioning Generation for Personalized Machine Translation

* Sarti, G., Htut, P. M., Niu, X., Hsu, B., Currey, A., Dinu, G. and Nadejde,
M. (2023b). RAMP: Retrieval and Attribute-Marking Enhanced Prompting
for Attribute-Controlled Translation. In Proc. of the 61st Annual Meeting of the
Association for Computational Linguistics (ACL) (Chapter 6)

* Scalena, D.T, Sarti, G.T, Bisazza, A., Fersini, E. and Nissim, M. (2025). Steering
Large Language Models for Machine Translation Personalization. Arxiv Preprint
(Chapter 7)

Part III: Interpretability in Human Translation Workflows
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* Sarti, G., Bisazza, A., Guerberof-Arenas, A. and Toral, A. (2022). DivEMT:
Neural Machine Translation Post-Editing Effort Across Typologically Diverse
Languages. In Proc. of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Chapter 8)

* Sarti, G., Zouhar, V., Chrupata, G., Guerberof-Arenas, A., Nissim, M. and
Bisazza, A. (2025b). QE4PE: Word-level Quality Estimation for Human
Post-Editing. Transactions of the Association for Computational Linguistics (TACL)
(Chapter 9)

* Sarti, G., Zouhar, V., Nissim, M. and Bisazza, A. (2025a). Unsupervised Word-
level Quality Estimation for Machine Translation Through the Lens of Annotators
(Dis)agreement. In Proc. of the 2025 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (Chapter 10)

I led the conceptualization, implementation, experimental evaluation, and manuscript
writing for each article for which I am the sole first author. For articles with shared first
authorship, I co-led the conceptualization, experimental design, and manuscript writ-
ing. In Qi, Sarti, et al. (2024), I also implemented the API for experimental evaluation.
The background in Chapter 2 adapts parts of our primer on transformer interpretability
(Ferrando et al., 2024), for which I contributed by surveying the literature and writ-
ing content regarding transformer architecture, input attribution methods, steering
approaches, and interpretability tools.

1.2.2 Open-source Contributions

Open-source software proved fundamental to this thesis, providing a solid foundation for
conducting reproducible experimental work. Notably, all investigations we conducted
employed solely open-source tools, models and datasets, despite the current popularity
of proprietary language models. Each chapter provides links to all datasets, models,
code, and demos to encourage scrutiny and foster further research.

My most notable contribution to the open-source research ecosystem is the Inseq
toolkit, presented in Chapter 3, for which I serve as development lead. The library now
counts 430+ Github stars and 80+ citations across international venues.

I also contributed to the development of the following open-source projects:

* The Groningen Translation Environment (GRoTE), a Gradio-based UI for
machine translation post-editing supporting the live recording of behavioral
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logs using the Hugging Face datasets hub and spaces ecosystem, developed
with the help of Vilém Zouhar for the QE4PE study (Chapter 9). Available at
https://github.com/gsarti/grote or via pip install grote.

* gradio-highlightedtextbox, a Svelte component for Gradio supporting text
editing with highlighted spans, developed for collecting behavioral edit data
in GROTE. Available at https://huggingface.co/spaces/gsarti/gradio_
highlightedtextbox or via pip install gradio-highlightedtextbox .

* labl, a toolkit to facilitate token-level analyses of annotated texts with multi-
ple edits and tokenization schemes, developed with the help of Vilém Zouhar
for Chapter 10 analyses. Available at https://github.com/gsarti/labl or via
pip install labl.

* Interpreto, a Python toolbox for concept-based interpretability analyses of
language models maintained by the FOR/DEEL teams, which I helped de-
sign and develop as part of my visit to the IRT Saint Exupéry research in-
stitute in Toulouse, France. Interpreto is available at https://github.com/
FOR-sight-ai/interpreto or via pip install interpreto.

The full set of open-source contributions, including demos, models, and datasets, are
available on GitHub and & Hugging Face.

1.2.3 Other Research Contributions

Beyond this dissertation’s scope, my research output included projects organized around
two main themes:

Advancing Italian natural language processing:

¢ Miaschi, A., Sarti, G., Brunato, D., Dell'Orletta, F. and Venturi, G. (2022). Prob-
ing Linguistic Knowledge in Italian Neural Language Models across Language
Varieties. Italian Journal of Computational Linguistics (I[CoL)

* Bianchi, F., Attanasio, G., Pisoni, R., Terragni, S., Sarti, G. and Balestri, D.
(2023). Contrastive Language-Image Pre-training for the Italian Language. In
Proc. of the 9th Italian Conference on Computational Linguistics (CLiC-it)

* Sarti, G. and Nissim, M. (2024). IT5: Text-to-text Pretraining for Italian Lan-
guage Understanding and Generation. In Proc. of the Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING)


https://github.com/gsarti/grote
https://huggingface.co/spaces/gsarti/gradio_highlightedtextbox
https://huggingface.co/spaces/gsarti/gradio_highlightedtextbox
https://github.com/gsarti/labl
https://www.irt-saintexupery.com/for-program/
https://www.deel.ai/
https://github.com/FOR-sight-ai/interpreto
https://github.com/FOR-sight-ai/interpreto
https://github.com/gsarti
https://huggingface.co/gsarti
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Sarti, G., Caselli, T., Nissim, M. and Bisazza, A. (2024b). Non Verbis, Sed Rebus:
Large Language Models Are Weak Solvers of Italian Rebuses. In Proc. of the 10th
Italian Conference on Computational Linguistics (CLiC-it)

Sarti, G., Caselli, T., Bisazza, A. and Nissim, M. (2024a). EurekaRebus - Verbal-
ized Rebus Solving with LLMs: A CALAMITA Challenge. In Proc. of the 10th
Italian Conference on Computational Linguistics (CLiC-it)

Ciaccio, C., Sarti, G., Miaschi, A. and Dell'Orletta, F. (2025). Crossword Space:
Latent Manifold Learning for Italian Crosswords and Beyond. In Proc. of the 11th
Italian Conference on Computational Linguistics (CLiC-it)

Interpreting the inner workings of generative language models:

Langedijk, A., Mohebbi, H., Sarti, G., Zuidema, W. and Jumelet, J. (2024).
DecoderLens: Layerwise Interpretation of Encoder-Decoder Transformers. In
Findings of the North American Chapter of the Association for Computational Linguistics
(NAACL Findings)

Edman, L., Sarti, G., Toral, A., van Noord, G. and Bisazza, A. (2024). Are
Character-level Translations Worth the Wait? Comparing ByT5 and mT5 for
Machine Translation. Trans. of the Association for Computational Linguistics (TACL)

Scalena, D., Sarti, G. and Nissim, M. (2024). Multi-property Steering of Large
Language Models with Dynamic Activation Composition. In Proc. of the 7th
Workshop on Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP)

Ghasemi Madani, M. R., Gema, A. P., Sarti, G., Zhao, Y., Minervini, P. and
Passerini, A. (2025). Noiser: Bounded Input Perturbations for Attributing Large
Language Models. In Proc. of the 2nd Conference on Language Modeling (CoLM)

Candussio, S., Saveri, G., Sarti, G. and Bortolussi, L. (2025). Bridging Logic and
Learning: Decoding Temporal Logic Embeddings via Transformers. In Proc. of
the European Conference on Machine Learning and Principles of Knowledge Discovery
in Databases (ECML-PKDD)

Islam, K. I. and Sarti, G. (2025). Reveal-Bangla: A Dataset for Cross-Lingual
Multi-Step Reasoning Evaluation. In Proc. of the 2nd Workshop on Bangla Language
Processing (BLP).
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Fin also had the privilege of co-organizing the BlackboxNLP 2025 workshop?—the
leading venue for NLP interpretability work—and contributing to its shared task on
benchmarking mechanistic interpretability methods for circuit localization and causal
variable identification in large language models:

* Belinkov, Y., Mueller, A., Kim, N., Mohebbi, H., Chen, H., Arad, D., Sarti,
G. (2025). Proceedings of the 8th BlackboxNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP.

e Arad, D., Belinkov, Y., Chen, H., Kim, N., Mohebbi, H., Mueller, A., Sarti, G.,
Tutek, M. (2025). Findings of the BlackboxNLP 2025 Shared Task: Localizing
Circuits and Causal Variables in Language Models. In Proc. of the 8th Workshop on
Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP)

2https://blackboxnlp.github.io/2025
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CHAPTER 2

Background

The initial sections of this chapter adapt contents from A Primer on the Inner
Workings of Transformer-based Language Models (Ferrando et al., 2024).

Distress not yourself if you cannot at first understand the deeper mysteries of
Spaceland. By degrees they will dawn upon you.

— Edwin A. Abbott, Flatland: A Romance of Many Dimensions, 1884

This chapter provides a succinct introduction to various topics discussed in the experi-
mental chapters of this dissertation. Rather than a comprehensive review of relevant
literature, it aims to provide key background about the research presented in this
manuscript.

In particular, Section 2.1 and Section 2.4 discuss the basic functioning of neural
networks-based language models and machine translation (MT) systems, and introduce
the machine translation task representing the core focus of this work. Section 2.2 and
Section 2.3 provide an introduction to methods for attributing inputs and conditioning
generation in language models, corresponding to the topics discussed in Part I and Part
II. Finally, Section 2.5 and Section 2.6 dive deeper in the translation domain, providing
an overview of how MT models are employed in the translation industry by human
post-editors, and discussing techniques for automatically evaluating machine translation
quality. These notions provide a valuable background to Part III, which focuses on the
impact of interpretability insights on human translation workflows.

Beyond this background section, each experimental chapter briefly summarizes relevant
literature to contextualize the research questions and findings.

13
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2.1 From Neural Networks to Neural Language Models

Neural networks are computational models which integrate principles from statistical
learning theory (Vapnik, 1995), consisting of interconnected nodes (neurons) organized
in layers, where each connection has an associated weight. Formally, a neural network
is a function f : X — ) that maps inputs x € X to outputsy € ), where X and Y
are the input and output feature spaces, respectively. The function f is parameterized
by weights § € ©, which are typically learned from data through the training process
described in Section 2.1.1. Individual neurons are functions parametrized by weights
w € R? and biases b € R, which are combined to produce an output o(w?x +b), where
o is a non-linear activation function. Thanks to non-linearities, sequences of neurons can

learn to represent complex relations from input vector x.!

2.1.1 Supervised Learning for Neural Networks

In the supervised learning paradigm, given a training dataset D containing paired in-
stances:

D ={(x1,41),- -, (xn,yn)} € (X x V)" (2.1)

where x; is a vector of input features and y; is the expected output, a neural network is
trained to learn a functional mapping f from inputs x to labels y by minimizing the
average value of a loss function £ : Y x Y — R, such that ¢(f(x), y) quantifies the gap
between predicted outcomes § and ground truth y over examples in D. The function
f is parameterized by weights € ©, which are optimized during training so as to
minimize the loss function. Such optimization is typically performed using some variant
of stochastic gradient descent (SGD), in which iterative steps 1,...,¢...,T are taken
to update 6 in the direction of the negative gradient of the loss function with respect to
the weights:

Ori1 < 0p — 1 Vo l(£(xj:0,), ;) (2.2)

where 7 is a chosen learning rate, and x; and y; are a subset of randomly sampled
input-output pairs from the training set D, typically referred to as mini-batch. This
iterative refinement of model parameters is repeated until convergence, i.e. until the
model performance on a left-out validation set does not improve significantly, allowing

IMore details on neural networks can be found in Goodfellow et al. (2016).
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for a robust convergence to a local minimum of the loss function, even for non-convex
problems and high-dimensional parameter spaces.

We commonly refer to the inference process going from input x to output y as forward
pass, and to the process of computing gradients and updating model parameters as
backward pass.

2.1.2 Transformer Neural Networks

Transformers (Vaswani et al., 2017) are a class of neural networks that have become
the de-facto standard for most natural language processing tasks, constituting the
core neural network architecture employed throughout this thesis” experiments. In
essence, a transformer consists of a sequence of identical macro-layers, dubbed blocks,
progressively contextualizing a sequence of input features Z € R5*<, where S is the
sequence length and d is the size of each feature vector. Figure 2.1 illustrates the
structure of a single transformer module, constituting the core of decoder-only language
models such as GPT-3 (Brown et al., 2020) presented later in Section 2.1.3. Notably,
the transformer architecture is characterized by its ability to process input sequences in
parallel, as opposed to recurrent models (Rumelhart and McClelland, 1987; Hochreiter
and Schmidhuber, 1997), making it highly efficient for training on large datasets.

We now describe the main components of a transformer block in order of execution
during the forward pass, using z; € R? to denote the input representations at each com-
ponent for sequence element i. This will be useful for explaining steering intervention
and vocabulary projection methods used in Chapter 7 and Chapter 10, respectively.

Layer normalization (LN).  The layer normalization operation, also known as
LayerNorm (Ba et al., 2016), is a common approach for stabilizing the training process
of deep neural networks. In practice, layer normalization applies the transformation:

LN(z;) = ZTZ()Z) ©v+8 (2.3)
where p, o are the mean and the standard deviation of z, and , 3 are learnable scale and
bias parameters for the normalization. This operation helps to mitigate issues related to
internal covariate shift, improving convergence during training. Recently, LayerNorm
has been substituted with RMSNorm (Zhang and Sennrich, 2019), which removes the
mean centering step and scales the input using the root mean square (RMS) statistic.

Multi-head self-attention (MHSA). The self-attention mechanism is the core
component of the transformer architecture, allowing the model to contextualize its



16 2. Background

[ Output Representations ]

A
-~
G — ~
Feedforward
Network
A
Residual | Layer Normalization
Stream
N
G.\—I
Multi-head
Self Attention
t
| Layer Normalization
I |
o P,

Input Features

Figure 2.1 | An example transformer module with N blocks. We adopt the residual
stream view of Elhage et al. (2021), with residual connections linearized to emphasize
the read-write operations performed by attention and feed-forward network modules.

representations at each layer by combining information across the input sequence.
While the original formulation of multi-head self-attention by Vaswani et al. (2017)
involves a concatenation of attention head outputs before the final output projection,
we follow here the more recent formulation by Kobayashi et al. (2021) and Elhage
et al. (2021), which reformulates the attention output computation using the sum of
individual attention heads, emphasizing the linear reading and writing operations within
the attention computation.

Concretely, the self-attention module is composed by a series of H attention heads
Attny, ..., Attng, each computing the following weighted sum:

Attny(z;) = Z aﬁgszVWo (2.4)
J

Intuitively, the sharding of the attention mechanism into separate computations can be
beneficial when processing the complex relations within different elements of the input
sequence, for example, the lexical, syntactic and semantic dimensions of words in a text.
The learnable weight matrices Wy € R?*% and W € R%*?, where d), represents
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the dimension of each head, can be combined into the so-called output-value (OV) circuit
as Wy Wo = Woy € R4%4, For every keyj given the current query position ¢ < .S,
the corresponding attention weight o' is computed as:

ZiWQ (WKZ)T
Vdy
Once again, the learnable weight matrices W € R%* and Wy € R%*? can be
combined as the query-key (QK) circuit WoWZL = W € R¥?. This decomposition
enables a view of QK and OV circuits as the units responsible for reading from (QK)

h

P =

) (2.5)

o) = softmax(

and writing to (OV) the residual stream. Finally, the attention block output is the sum
of individual attention heads:

H
Attn(z;) = ZAttnh(zi) (2.6)
h=1

Residual connection.  The introduction of residual connections (He et al., 2016) in
the transformer architecture allows the model to learn identity mappings more easily,
facilitating the training of deeper networks and avoiding the vanishing gradient problem
(Hochreiter, 1998). A residual connection is commonly applied to the output of the
self-attention module, resulting in:

ResAttn(z;) = Attn (LN(z;)) + z; (2.7)

Feedforward network (FFN).  The feedforward network (FFN) in the transformer
block is composed of two learnable weight matrices®> Wi, € R%*% and W, €
R %4 W, reads from the residual stream state z, and its result is passed through an
element-wise non-linear activation function o, producing a set of neuron activations.
These get transformed by W, to produce the output FEN(z):

FEN(z;) = 0/(2;Win) W oy (2.8)

The FFN operation was compared to a retrieval step from a key-value memory (Geva
et al., 2021), with keys stored in columns of W, acting as pattern detectors over the
input sequence, and values in rows of W, being upweighted by respective neuron
activation. The overall block structure from Figure 2.1 can then be summarized as:

2Bias terms can be omitted, following the practice of recent models such as Llama (Touvron et al.,
2023)
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Block(z;) = FEN (LN(ResAttn(zQ)) + ResActn(z:) (2.9)

We will henceforth use z! to denote the output of the I-th block for the i-th element of
the input sequence for transformer models.

2.1.3 Transformer Language Models

A language model is a probabilistic model that can assign probabilities to sequences of
tokens. Formally, given an input sequence X = (t1,...,tg) of S tokens, which in the
case of natural language are typically words or subword units (Sennrich et al., 2016b)
from a vocabulary V), a language model f computes the probability of the sequence as
the product of token-level conditional probabilities:

S

P(X) = P(ty,....ts) = [ [ P(tilts, ... ti-1) (2.10)
i=1

Language models operating under such formulation are typically referred to as auto-
regressive or causal language models (CLMs, or simply LMs), to differentiate them from
masked language models (MLMs) trained to fill the blanks in a sequence (Devlin et al.,
2019). While MLMs were the main object of analysis of early interpretability research
on transformer models (Tenney et al., 2019; Clark et al., 2019; Rogers et al., 2020),
this dissertation focuses solely on CLMs, which after the advent of ChatGPT? in 2022
became the dominant paradigm in the NLP and interpretability community. CLMs
are typically decoder-only models, following the structure introduced in Section 2.1.2,
or encoder-decoder models, such as the MT systems later discussed in Section 2.4.

Importantly, LMs can be used for generating text by iteratively sampling from the
probability distribution over the next token ¢; given the previous tokens ¢1,...,¢;_1,
e.g. using the greedy decoding sampling method:

tf = arg max P("t17~~~7ti—1) (211)
tey
This sampling process can be repeated autoregressively, i.e. by adding the selected token
t¥ to the input sequence, until a special end-of-sequence token is generated, or until a
maximum sequence length is reached.

3https://openai.com/index/chatgpt
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Figure 2.2 | A transformer language model predicting the next word given a prefix.

We now turn to the additional components required to convert the generic transformer
model presented in the previous section into a language model able to process and
generate sequences of tokens. Figure 2.2 shows a stylized view of a transformer LM.

Embedding layer.  The first component of a transformer language model is the
embedding layer, which maps input tokens to continuous vector representations, known
as embeddings. Word embeddings such as Word2Vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014) revolutionized the field of natural language processing by
exploiting distributional semantics, i.e. the fact that words which frequently appear in
similar contexts should have similar meaning (Harris, 1954), to learn word representa-
tions end-to-end using gradient descent. In transformers, the roken embedding matrix
E € RIVIX4 where d is the size of the embedding vectors, and |V| is the vocabulary size,
is learned jointly with the rest of model parameters during training. The embedding
layer maps each token ¢; in the input sequence to its corresponding vector z; = E[t;].
The resulting sequence of embeddings Z € R¥*? corresponds to the input to the first
transformer block. It is important to note that representations produced by E are not
contextualized, i.e. the same token ¢; will always be mapped to the same vector z;,
regardless of its meaning in the given sequence. For example, the word ring will always
be mapped to the same vector, regardless of whether it is used as a noun or a verb. The
transformer blocks are used to contextualize these representations, i.e. produce different
vectors for the same token depending on the remainder of the sequence.

Positional encodings. ~ While the sequential nature of language is an important
factor in how we produce and process linguistic information, transformer models do
not explicitly account for ordering across elements of the input sequence. For this
reason, positional encodings injecting information about the position of each token in
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the sequence are commonly used in transformer-based language models. The most
basic positional encoding is a fixed sinusoidal encoding (Vaswani et al., 2017), which
is added directly to the input embeddings. Recent models, however, employ rotary
position embeddings, allowing for the encoding of both absolute and relative positions
between tokens, and allowing the model to generalize to longer contexts beyond those
seen during training (Su et al., 2024).

Causal self-attention.  The self-attention mechanism in transformer language mod-
els is causal, meaning that the attention weights for each token ¢; are computed only
over the tokens preceding it in the sequence, i.e. ty,...,¢;_1. This ensures that the
model can only attend to past tokens when predicting the next token, preserving the
auto-regressive nature of the model. The causal self-attention mechanism is imple-
mented by masking out future tokens in the attention computation, ensuring that o is
computed only for j < ¢ in Equation 2.4, and that only representations Z<; are used to
compute the key vector in Equation 2.5.

Prediction head.  The prediction head of a transformer language models consists of a
so-called unembedding matrix Wy, € R v mirroring the initial embedding operation,
sometimes accompanied by a bias. The last residual stream state z%, where L is the
number of transformer blocks and S is the sequence length, gets transformed by this
linear map converting the representation into a next-token distribution of logits, which
is turned into a probability distribution via the softmax function:

P(-|t1,...,ti_1) = softmax(z- Wy,) (2.12)

In light of the residual stream view presented in Section 2.1.2, showing that different
model components read from and write to the residual stream, it is natural to believe that
the predictions derived by applying the unembedding matrix to the final residual stream
state z5 are the product of an iferative refinement across model components (Jastrzebski
et al., 2018). The logit lens method (nostalgebraist, 2020), which we study for error
detection in Chapter 10, exploits this intuition to analyze how the model refines the
prediction throughout the forward pass, by projecting intermediate residual stream
states zl, with | < L, to the vocabulary space using Wy .

Language model pre-training. Modern language models such as those employed
in this thesis are typically pre-trained on large web corpora spanning billions or trillions
of tokens using the next-token prediction objective, i.e. minimizing the cross-entropy
loss between the next-token distribution predicted by the model and the next observed
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token. This frames the language model training problem as an instance of supervised
learning, which we presented in Section 2.1.1. Formally, given a minibatch D, of
corpus D composed by sequences of tokens Xy = (t1,...,tg,), the loss for a single
training step is computed as:

Lytep = |D, > ZlogPthfl,... tio1) (2.13)

XkeD,; i=1

Concretely, this corresponds to maximizing the likelihood of the observed tokens given
the context provided by the preceding tokens, while minimizing the likelihood of all
other incorrect tokens.

Language model post-training.  After pre-training, language models can be used
for generating text given some context, but mostly lack the ability to perform specific
tasks without being provided explicit examples, or respond to queries as conversational
agents. For this reasons, all language models used for our experiments underwent
additional supervised fine-tuning (SFT, also known as instruction tuning), allowing
them to learn input-output mappings for realistic user queries beyond natural text
occurrences in the pre-training corpus (Howard and Ruder, 2018; Sanh et al., 2022).
The fine-tuning process still involves the same L.y, loss function over a smaller, curated
set of demonstrations. Some of the models we study—such as the Gemma 2 models
from Chapter 7 or the Zephyr model from Chapter 5 —underwent an additional
reinforcement learning from human feedback (RLHF) step, in which the model is fine-tuned
to maximize the likelihood of human preferences over pairs of model generations, using
areward model trained on human preferences. This process is typically performed using
Proximal Policy Optimization [PPO;Schulman et al. (2017)] or similar reinforcement
learning algorithms. Unless otherwise specified, we use the term language model to
refer to transformer language models that were first pre-trained and then fine-tuned,
representing the main focus of this thesis.

2.2 Explaining Predictions with Input Attribution

Contrary to linear models, where learned coefficients directly correspond to the influ-
ence of their respective features towards predictions, neural networks’ outcomes cannot
be directly interpreted due to the presence of multiple nonlinearities across layers,
rendering the attribution of model prediction to individual input features non-trivial.
Input attribution methods, also known as feature attribution, were introduced to address
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this issue by providing a principled way to assign importance scores to input features,
clarifying the rationales behind model decisions (Zeiler et al., 2011).

Formally, for a model f € F : X — ), given an input x € X, we can define the
attribution method ~ as a functional:

v: X x F— R

so that ag(x) = v(x,f) is a vector of attribution scores quantifying the influence of each
element of x on the model predictive distribution f(x), with higher scores representing
greater importance (Fel, 2024). It is worth noting that attribution methods can rely
on one or more specific outcomes y € Y from the predictive distribution f(x), such
as perturbation-based approaches (Covert et al., 2021), or simply rely on the flow
of information within the model to identify important input elements (Abnar and
Zuidema, 2020). We call the former methods target-dependent, and we discuss them
further in Chapter 4.

2.2.1 Attribution Method Categories

We now briefly summarize common families of input attribution methods, which
are employed throughout the first part of this thesis. An in-depth overview of input
attribution techniques for natural language processing can be found in Madsen et al.
(2022b).

Gradient-based attribution  For neural network models like transformer LMs,
gradients are a natural source of input saliency which can be exploited for attribution
purposes (Simonyan et al., 2014; Li et al., 2016). A simple gradient-based attribution
corresponds to a first-order Taylor expansion of the model at a point x, expressed as
Vf(x)-x+b. The resulting gradient VEf captures intuitively the sensitivity of the model
prediction c to each element in the input. In the case of transformer LMs, VY f € R5*4,
i.e. every dimension of the input embedding is associated with a attribution score,
and the logit of the top predicted token ¢* is used as differentiation target for gradient
computation.* These scores are generally aggregated at a token level to obtain a more
intuitive overview of the influence of individual tokens. This is commonly done by
taking the LP norm of the gradient vector:

4Probability scores are commonly used as differentiation targets, see discussion in Bastings et al.
(2022).
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Figure 2.3 | Gradient-based attribution in a neural language model.
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Figure 2.3 shows an example of gradient attribution on a language model. By tak-
ing the dot product between the gradient vector and the input embedding VL -x,
known as the gradient x input method, this sensitivity information can be converted to
an importance estimate. More elaborate gradient-based attribution methods employ
perturbations of the input embedding (Sundararajan et al., 2017; Smilkov et al., 2017)
or ad-hoc gradient propagation rules (Bach et al., 2015; Achtibat et al., 2024) to filter
noisy gradient information.

Gradient-based attribution methods are heavily used in the investigations of Chapter 3,
Chapter 4 and Chapter 5, representing the majority of methods supported by the Inseq
toolkit and the most effective approaches for contextual cues imputation in the PECoRe
framework. Notably, gradient attribution can be exploited in a similar way to identify
the importance of intermediate states z in the model, as opposed to input representations
x, i.e. using V4 f. The CAT method proposed in Chapter 3 case study adopts this
attribution-based approach to locate factual knowledge across LM layers.

Perturbation-based attribution ~ Another popular family of approaches estimates
input importance by adding noise or ablating input elements and measuring the resulting
impact on model predictions. For instance, the input token w; at position j can be
removed, and the resulting probability difference p(t*|t;) — p( Vo, [t<i)s where t*
is the predicted token for current sequence position i and j < i, can be used as an
estimate for its importance. If the logit or probability given to w does not change,
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we conclude that the i-th token has no influence. A multitude of perturbation-based
attribution methods exist in the literature, such as those based on local surrogate models
such as LIME (Ribeiro et al., 2016), or those derived from game theory like SHAP
(Lundberg and Lee, 2017). Notably, some architecture-specific methods such as Value
Zeroing (Mohebbi et al., 2023) have been proposed to mitigate the disruptive impact
of perturbations on model behaviors. A comprehensive framework unifying various
perturbation-based approaches is presented by Covert et al. (2021).

Context mixing for attribution  Model internals such as the attention weights o
presented in Section 2.1.2 were initially proposed as possible explanations for model
behavior (Bahdanau et al., 2015), but were found unfaithful in reflecting the actual
predictive behavior of language models (Jain and Wallace, 2019; Bastings and Filip-
pova, 2020). This is because, contrary to other approaches, they only accounted for
the importance of specific model components, rather than a more general notion of
saliency across the full model. However, recent methods have proposed more refined
estimates of token contributions exploiting internals to quantify the information flow
within LMs. Some of these alternatives include the use of the norm of value-weighted
vectors and output-value-weighted vectors (Kobayashi et al., 2020, 2021), or the use
of vectors’ distances to estimate token contributions (Ferrando et al., 2022b). These
methods result in a set of attribution scores ag(xy € RS>, marking the contribution of
position-specific representation across all layers 1, ..., L of the model. These per-layer
attributions reflecting context mixing patterns are often aggregated using techniques
such as rollout (Abnar and Zuidema, 2020), resulting in one score per input token
participating in the attention operation. Such context mixing approaches have shown
competitive faithfulness compared to best gradient and perturbation-based methods,
despite employing only a single forward pass to estimate contributions.

Contrastive input attribution  An important limitation of input attribution methods
for interpreting language models is that attributed output tokens belong to a large
vocabulary space, often having semantically equivalent tokens competing for probability
mass in next-word prediction (Holtzman et al., 2021). In this context, attribution scores
are likely to misrepresent several overlapping factors such as grammatical correctness
and semantic appropriateness driving the model prediction. Recent work addresses this
issue by proposing a contrastive formulation of such methods, producing counterfactual
explanations for why the model predicts token ¢* instead of an alternative token ¢™.
Yin and Neubig (2022) extend the vanilla gradient method of Equation 2.14 to the
contrastive setting as:
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ContGrad ¢(x) ¢+ o~ = Vi f (2.15)

We employ this formulation in the PECoRE framework in Chapter 4 and its extension
of Chapter 5 to identify salient context cues for generated tokens that were highly
influenced by context.

2.2.2 Evaluating and Using Attribution Methods

Plausibility and Faithfulness The evaluation of input attribution methods can be
operationalized in terms of various desiderata. Plausibility, also referred to as “human-
interpretability” (Lage et al., 2019), is a measure of “how convincing the interpretation is to
humans” (Jacovi and Goldberg, 2020), i.e. how well the salient tokens identified by an
attribution method are in agreement with those selected by human annotators. It is
important to note that plausibility does not imply faithfulness, i.e. how accurately the
rationale reflects the true reasoning process of the model (Wiegreffe and Pinter, 2019),
since a good explanation of model behavior might not align with human intuition.
Consider the following sentence from the BLIMP corpus (Warstadt et al., 2020).

x = A report about the Impressionists has/xhave won the competition.

For the sentence to be grammatically correct, the verb o have must be correctly inflected
as has to agree with the preceding noun report. Hence, to evaluate the plausibility of a
language model for this example, the model is provided with the prefix x’ =“A report
about the Impressionists”. Then, attribution scores are computed for every input token
towards the prediction of /as as the next token. Finally, we verify whether these scores
identify the token report as the most important to predict has. We note that the selection
of the pair report-has in the canonical procedure described above is entirely based on
grammatical correctness, and other potential pairs not matching these constraints are
not considered (e.g. the usage of report to predict writing instead of has as a likely
continuation). This common procedure might also cause reasonable behaviors to be
labeled as implausible. For example, the indefinite article A might be identified as the
most important token to predict has since it is forcibly followed by a singular noun
and can co-occur with has more frequently than report in the model’s training data.
These limitations in the standard hypothesis-driven approach to plausibility evaluation
motivate our proposal for PECORE as a data-driven alternative in Chapter 4.

Limitations of input attribution methods ~ While input attribution methods are
commonly used to debug failure cases and identify biases in models’ predictions (McCoy
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et al., 2019), popular approaches were shown to be insensitive to variations in the model
and data generating process (Adebayo et al., 2018; Sixt et al., 2020), to disagree with each
others’ predictions (Atanasova et al., 2020; Crabbé and van der Schaar, 2023; Krishna
et al., 2024) and to show limited capacity in detecting unseen spurious correlations
(Adebayo et al., 2020, 2022). Importantly, popular methods were found provably
unreliable at predicting counterfactual model behavior in realistic settings (Bilodeau
et al., 2024). Apart from theoretical limitations, perturbation-based approaches also
suffer from out-of-distribution predictions induced by unrealistic noised or ablated
inputs, and from high computational cost of targeted ablations for granular input
elements.

Tools for input ateribution  The captum library (Kokhlikyan et al., 2020) is part of
the Pytorch ecosystem providing access to several gradient and perturbation-based input
attribution methods for any Pytorch-based model, with the recent addition of utilities
for simplifying attribution analyses of generative LMs (Miglani et al., 2023). Several
captum -based tools provide convenient APIs for input attribution of transformer-based
models, notably Transformers Interpret (Pierse, 2021), ferret (Attanasio et al., 2023)
and Ecco (Alammar, 2021), which are mainly centered around language classifica-
tion tasks. SHAP (Lundberg and Lee, 2017) is a popular toolkit mainly centered on
perturbation-based input attribution methods and model-agnostic explanations for
various data modalities. The saliency library® provides framework-agnostic imple-
mentations for mainly gradient-based input attribution methods, while LIT (Tenney
et al., 2020) is a framework-agnostic tool providing a convenient set of utilities and an
intuitive interface for interpretability studies spanning input attribution, concept-based
explanations and counterfactual behavior evaluation. It notably includes a visual tool
for debugging complex LLM prompts (Tenney et al., 2024). More recent low-level
interpretability tools such as nnsight (Fiotto-Kaufman et al., 2025) also support attri-
bution, without explicitly providing abstractions to facilitate its usage. inseq, which
we introduce in Chapter 3 as part of this thesis’ contributions, is one of the most popu-
lar tools for input attribution of generative LMs, supporting advanced approaches for
contrastive context attribution (Sarti et al., 2024c) and context mixing evaluation.

2.3 Conditioning Language Model Generations

This section describes the two main families of approaches for conditioning the behavior
of language models during text generation. First, we present methods for modifying

Shttps://github.com/PAIR-code/saliency
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Translate English to Italian: How old is the Martini Tower in Groningen?

. Context:
sea otter => 1ontra marina

Doc [1]: % ) [...] The third and current tower was
largely built between built between 1469 and 1482 [...]

}?hJSh glmffc = g1mffa PC]UChC = Doc [2]: (G The Martinitoren. For centuries, d'Olle
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= Grieze has looked out over the city centre [...]
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A macchina fotografica a pellicola ] JAnswer: It was built between 1469 and 1482. }

Figure 2.4 | Left: Few-shot prompting for English—Italian translation. Right:
Retrieval-augmented generation for factual question answering. Relevant paragraphs
are dynamically retrieved and infilled in the prompt using their similarity to the query
to improve answer quality.

the input context by providing relevant information retrieved from external sources, or
demonstrations of desired behavior, which we use in Chapter 5, Chapter 6, and 7. Then,
we discuss approaches for modifying the model’s internal representations to achieve
targeted interventions in the generation process, which we compare to prompting
methods in Chapter 7.

2.3.1 Controlling Input Context

Large language models have become widely popular due to their ability to adjust their
predictions in light of few examples or relevant information provided in an input context
(prompr), without requiring additional training (Brown et al., 2020). Prompting LLMs
to exploit their in-context learning skills has become pervasive in the NLP community,
with much effort devoted to designing effective prompts for various tasks (Dong et al.,
2024).

Few-shot prompting is an effective approach to adapt LLMs to new tasks by providing
a few demonstrations of the desired behavior in the input context. For example, to
perform a translation, a few source language examples can be provided in the prompt
with their respective target language translations, and the model is expected to translate
new source entries used as queries (Figure 2.4, left). Zero-shot prompting is a more
challenging task, where the model is expected to perform well on a new task without
any demonstrations, relying solely on its pre-trained knowledge. While effective, several
studies highlighted the brittleness of prompting to unexpected factors such as the order
of provided examples (Lu et al., 2022). In this thesis, we use few-shot prompting in our
attribute-controlled translation experiments of Chapter 6 and our literary translation
experiments of Chapter 7.

Retrieval-augmented generation (RAG) is a different approach for conditioning generation
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where the model is provided with relevant context paragraphs retrieved on-the-fly
from an external dataset, such as Wikipedia or a domain-specific corpus. This context
is then used to inform the model’s predictions, allowing it to generate more accurate
and relevant responses without relying solely on its potentially faulty pre-training
knowledge (Figure 2.4, right). RAG has been shown to be effective in improving
the factual accuracy of model outputs and reducing hallucinations (Lewis et al., 2020;
Petroni et al., 2020). However, it is not directly obvious which retrieved paragraphs
are motivating the model’s predictions, a challenge we address via input attribution
in Chapter 5. Chapter 6 also employs a similarity retrieval component to control the
examples selected for few-shot prompting, showing that example selection leads to
better performances in machine translation with LLMs.

2.3.2 Controlling Model Representations

Techniques for conditioning model behavior by modifying the model’s internal repre-
sentations are commonly referred to as steering methods, and often exploit the linear
structure of model activations to achieve simple targeted interventions. Indeed, the linear
representation hypothesis states that latent properties of interest—for example, the tone of a
response—are encoded as linear subspaces of the representation space in language model
activation (Park et al., 2023). Such property was already observed in early work on word
embeddings (Mikolov et al., 2013), where the direction of the vector between two words
was shown to encode their semantic relationship, e.g. Ziing — Zman + Zwoman ~ Zqueen-

Recent work highlighted the effectiveness of linear interventions on language models
representations using directions identified by a probing classifier, i.e. a model p : RY — C
trained to predict a specific property of interest ¢ € C from the intermediate repre-
sentation of a trained transformer LM (K&hn, 2015; Gupta et al., 2015; see Belinkov,
2022, for a review). For instance, adding negative multiples of the sentiment direction

Vas 7zt < 7! — aegenr, where

(Csent) to the residual stream, i.e. modifying the activation z
here a is a pre-selected steering coefficient controlling the intensity of the intervention,
is sufficient to generate a text exhibiting the opposite sentiment label (Tigges et al.,
2024). This simple procedure, known as activation addition, has become popular for
conditioning desired attributes in model generations, including multiple properties at
once (Scalena et al., 2024). Some of its variants omit probing classifiers and employ other
unsupervised methods for computing feature directions, such as K-Means clustering of
representations for examples showing a desired property (Zou et al., 2024), or mean
difference between representations for positive and negative sets of demonstrations
(Marks and Tegmark, 2024; Arditi et al., 2024).
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Wu et al. (2024) describe a broader framework for representation steering, proposing the
use of learnable interventions for conditioning generation at specific steps with variable
intensity. Formally, an intervention I can be defined as a tuple composed by an
intervention function & : R4 — R with learnable parameters, a set of input positions P C
{1,..., S} that the intervention is applied to and the layer [ at which the intervention
is applied. This framework, dubbed representation fine-tuning (ReFT), allows to learn
interventions overriding z' as:

l . .
= &7, ifieP (2.16)

7l otherwise

77

The intervention function can be learned by minimizing the normal cross-entropy
loss with a next token prediction objective, optimizing only the parameters of the
intervention function. Activation addition (ActAdd) can then be described as a special
case in this broader framework, where the intervention function ¢ is constant and
applied at all generation steps. In the experiments of Chapter 7, we use ActAdd and
REFT as baselines for our proposed steering method.

The final steering approach we discuss in this section involves the use of sparse autoen-
coders|SAEs; Huben et al. (2024)] for conditioning model behavior. SAEs have become
widely adopted for analyzing the representations learned by transformer LMs thanks to
their ability to address polysemanticity, i.e. the entanglement of multiple concepts within
learned model representations. Indeed, neurons in transformer LMs were observed to
activate on diverse and semantically distinct contexts, with concepts being encoded in a
distributed manner across multiple units (Smolensky, 1986; Olah, 2023). In light of this,
and given the disparity between the relatively low-dimensional representations learned
by transformer LMs and the vast array of abilities they acquire during training, latent
concept representations were speculated to be encoded in superposition across various
model units (Arora et al., 2018), i.e. that multiple neurons jointly encode the presence
of a single concept (Figure 2.5, left). A concrete example of this phenomenon is given
by Elhage et al. (2022), where superposition is observed in presence of a long tail of
sparse concepts in the training dataset.

A possible strategy to disentangle concepts in superposition involves finding an over-
complete feature basis via dictionary learning (Olshausen and Field, 1997; Donoho and
Elad, 2003). SAEs are simple autoencoder neural networks, i.e. models trained to re-
construct their input, that can be trained to reconstruct internal representations z € R?
of a neural network exhibiting superposition. Their training objective encourages the
model to learn a sparse coding of the input representation through an ad-hoc loss term,
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Figure 2.5 | Left: Concepts encoded in a 2-dimensional parameter space. (a) Polyse-
manticity can be observed when concept do not align with the standard basis, i.e. they
are encoded jointly by multiple units. (b) If concepts align perfectly with neurons, these
neurons are monosemantic. (c) When the number of concepts exceeds the number of
parameters, polysemanticity is inevitable and superposition is observed. Right: Sparse
autoencoder (SAE) trained to reconstruct a model’s internal representations z. Inter-
pretable SAE concepts are found in rows of W ... Biases are omitted for clarity.

resulting in a sparse dictionary of learned concepts. Huben et al. (2024) and Bricken
et al. (2023) propose training SAEs on transformer LM representations using the form:

SAE(Z) = h(Z) Wdec + bdec

(2.17)
with h(Z) = U((Z - bdec)wenc + benc)

using the loss function:

L(z) = ||z — SAE(2) |3 + al|h(2)| (2.18)

where o is a non-linear activation function, Wepe and W, are the encoder and decoder
learned weight matrices, respectively, and « is a hyperparameter controlling the sparsity
of the learned representation. The first term in Equation 2.18 is the reconstruction term,
accounting for the quality of reconstruction, while the second term is the sparsity term,
which promotes sparsity. The SAE architecture is illustrated in Figure 2.5 (right).

If h(z) € R™ and m > d, z can be approximated as a sparse linear combination of
the learned rows in the dictionary Wy, € R™*4, ideally representing monosemantic
concepts. Similarly to activation addition, these concepts can be used to steer model
behavior by scaling them using a steering coefficient before reconstruction, resulting
in a modified representation z. We use a similar approach in our SAE-based steering
method we present in Chapter 7.
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2.4 Machine Translation

Machine translation is a long-standing task in natural language processing, with the goal
of automatically translating text from a source language to another target language. In this
section, we provide a brief overview of the evolution of machine translation approaches,
describe how transformer LM architectures are commonly used for machine translation,
and how such models can handle multiple languages and contextual information.

The history of machine translation can be summarized in three main phases. Between
the 1960s and the 1980s, the first successes of machine translation were attained by
rule-based systems exploiting various techniques, ranging from direct translation using
dictionaries with a set of reordering rules to ambitious methods aiming to exploit
an interlingua to act as a bridge when mapping meaning across languages (Hutchins,
2001). As for most rule-based methods, however, these approaches were limited by
the need of ad-hoc rules, which could hardly account for less frequent and challenging
settings. From the 1990s onwards, the statistical paradigm took foot by exploiting large
bilingual corpora made available by the birth of the World Wide Web to train statistical
language models parametrized as tables of co-occurrence probabilities (Och et al., 1999),
with popular approaches aiming to segment challenging sentences into simpler phrases
for ease of translation via co-occurrences (Koehn et al., 2003) or syntactic analysis
(Hadiwinoto, 2017). In 2013, the advent of word embeddings coincided with the first
MT systems based on continuous language representations parametrized by neural
networks (Kalchbrenner and Blunsom, 2013), marking the advent of the neural MT
(NMT) paradigm that remains the current state-of-the-art for machine translation.
While the architecture of NMT systems has barely changed since the introduction of
the transformer, as for most NLP tasks the introduction of large pre-trained language
models has led to general-purpose models able to handle various translation-related task
via light tuning and ad-hoc prompting (Alves et al., 2024).

Provided that machine translation involves the generation of a sequence of translated
target tokens, it is straightforward to see how such task can fit well into the sequence-to-
sequence framework adopted by neural language models. Given a sequence of tokens
x = (x1,22,...,2g,) in the source language s, a language model can be trained to
generate a sequence of target tokens y = (y1, ¥, .. .,ys,) in the target language ¢ using
the classic cross-entropy loss function. The transformer module we presented in Sec-
tion 2.1.3 corresponds to the decoder-only architecture currently preferred for language
modeling, involving a single stack of blocks. However, the original model proposed
by Vaswani et al. (2017) followed the traditional encoder-decoder structure adopted in
MT, with an additional dedicated component for encoding source information and
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Figure 2.6 | Transformer encoder-decoder architecture for neural machine translation.
The encoder processes the source sentence and produces a sequence of contextualized
representations, while the decoder generates the target sentence using causal self-
attention (MHSA) and cross-attention (MHCA) mechanisms. The last decoder state is
projected to the vocabulary space by the prediction head, and the next word is selected.

influencing the generation of target tokens.

The encoder-decoder transformer architecture for machine translation is illustrated in
Figure 2.6. The encoder processes the source sentence x and produces a sequence of
contextualized representations ZZxe € R¥*de capturing the meaning of the source
sentence. When generating the i-th token in the target sentence, every block of
the decoder then attends to the target prefix y.; using the self-attention module
(MHSA) presented in Section 2.1.2, and complements this with a multi-head cross-
attention (MHCA) mechanism integrating information from encoder representations
ZLee. Functionally, the cross-attention module is identical to self-attention, but employs

encoder representations to generate key and value vectors, while the query vectors are
generated from the decoder representations.

While encoder-decoder transformers were traditionally trained from scratch on the
machine translation task, the current state-of-the-art adapts pre-trained decoder-only
LLMs with ad-hoc supervised tuning (Cui et al., 2025; Rei et al., 2024; Xu et al., 2024).
Our experiments reflect this paradigm shift: initial MT experiments in Chapter 4,
Chapter 8 and Chapter 9 employ traditional encoder-decoder, single-purpose translation
models, while in Chapter 6 and Chapter 7 we generate translations by prompting
general-purpose LLMs. Finally, Chapter 10 evaluates methods on both model types.
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Multilingual machine translation  Even before the advent of LLM-based trans-
lation systems, an important trend in MT research involved the training of massively
multilingual MT (MMT) models capable of producing direct translations across hun-
dreds of translation directions (Aharoni et al., 2019). Such approach was shown to
bring improvements over previous methods requiring an intermediate translation step
into a high-resource pivor language when two less-resourced languages were used as
source and target (Kim et al., 2019a). MMT models are typically trained on large
multilingual web corpora with similarity-matched sentence pairs in different languages
(Schwenk et al., 2021), using special language tags such as <eng_Latn> as prefixes to
mark source and target languages. After training, a translation into a specific language
can be produced by prepending the respective language tag to the target sequence,
biasing model generation towards tokens matching that language. This thesis makes
ample use of encoder-decoder MMT models, such as mBART-50 (Tang et al., 2021),
trained to translate from English to 50 languages (one-to-many MMT), M2M-100 (Fan
et al., 2021), with many-to-many translation between 100 languages, and finally No
Language Left Behind [NLLB; NLLB Team et al. (2024)], covering 200 languages in
all directions. Decoder-only LLMs are generally trained on variable amounts of multi-
lingual data®, and hence exhibit some degree of multilingual ability without additional
MT tuning.

Context-aware machine translation Inter-sentential context is often fundamental
for resolving discourse-level ambiguities during translation (Miiller et al., 2018; Bawden
et al., 2018; Voita et al., 2019b; Fernandes et al., 2023b). Traditional MT systems were
trained at segment level due to their limited ability in handling long context, poten-
tially losing important contextual information that spans beyond sentence boundaries,
resulting in lower performances in realistic settings (Liubli et al., 2018; Toral et al.,
2018a). Context-aware MT approaches aimed to address this limitation by incorporating
document-level information to improve translation quality and consistency, leading
to improved performance when translating cohesive discourse phenomena such as
anaphora resolution, lexical cohesion, and maintaining consistent terminology within a
document (Voita et al., 2018; Maruf and Haffari, 2018). Initial context-aware approaches
for NMT employed methods ranging from concatenating multiple source sentences to
employing hierarchical attention mechanisms that explicitly model document struc-
ture (Miculicich et al., 2018; Zhang et al., 2018). We use one such methods, namely
concatenating context and current source text using a special <brk> tag, for the NMT

6Since the push towards proprietary model serving, details about the distribution of training data
across languages in tech reports are often scarce.
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models we analyze in Chapter 4. Recent LLM-based translation systems can naturally
process longer contexts and maintain better consistency across document boundaries
(Wang et al., 2023a; Briakou et al., 2024).

2.5 MT Post-Editing and Evaluation

The landscape of machine translation has undergone a fundamental transformation in
recent decades, shifting from a tool primarily designed for professional translators to a
technology accessed by millions of lay users worldwide (Savoldi et al., 2025). In this
section, we review MT post-editing tools and practices, and discuss how MT outputs
are evaluated by means of automatic metrics and human annotators.

2.5.1 Post-editing MT

Since the inception of MT technologies in professional translation workflow, human
post-editing has been a crucial step to ensure quality and mitigate potential critical errors,
especially for low-resource settings (Wagner, 1983; Church and Hovy, 1993). The
industry distinguishes between two primary post-editing levels: light post-editing, which
focuses on correcting only critical errors affecting comprehension while tolerating
stylistic imperfections, and full post-editing, which aims to achieve human translation
quality standards. The choice between these approaches involves trade-offs between
effort investment and quality requirements, with light post-editing being faster while
maintaining acceptable quality for many use cases (Plitt and Masselot, 2010). Seminal
post-editing studies highlighted an increase in translators’ productivity following MT
adoption (Guerberof, 2009; Green et al., 2013; Liubli et al., 2013; Plitt and Masselot,
2010; Parra Escartin and Arcedillo, 2015). However, they also struggled to identify
generalizable findings due to confounding factors like output quality, content domains,
and high variance across language pairs and human subjects. With the advent of NMT,
productivity gains of the new approach were extensively compared to those of statistical
MT (Castilho et al., 2017; Bentivogli et al., 2016; Toral et al., 2018b; Liubli et al., 2019).
Initial results were promising for NMT due to its better fluency and overall results.
Moreover, translators were shown to prefer NMT over SMT for post-editing, although
a pronounced productivity increase was not always present. In more recent times,
various works explored the usage of adaptive MT systems that learn from post-editing
feedback in real-time (Turchi et al., 2017; Karimova et al., 2018), with the goal of
progressively reducing repetitive corrections and adapting to translator preferences.
Notably, recent estimates confirm that human-machine collaboration can match or
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even exceed the quality of human-only translations, with potential cost reductions
estimated at around 60% the price of full human post-editing (Liu et al., 2024).

The main metric of evaluation for post-editing in the industry is productivity, often
operationalized as the amount of source characters or word revised per minute. On the
other hand, post-editing research often complements productivity measurements with
editing effort alongside its temporal, technical and cognitive components (Krings, 2001),
corresponding to editing time, number of keystrokes and pauses between keystrokes
during the editing process, respectively. Importantly, the cognitive and temporal
demands of post-editing were found to vary significantly depending on various factors,
such as error types and user expertise. For example, Daems et al. (2017b) found that
certain error categories have disproportionate impacts on post-editing effort, with
adequacy errors often requiring more cognitive resources than fluency errors, even
though the latter may be more immediately apparent to users (Martindale and Carpuat,
2018). Domain-specific considerations further complicate this landscape, as technical
domains may tolerate certain stylistic variations while requiring precise terminology,
whereas literary translation may prioritize creative renditions of meaning (Guerberof-
Arenas and Toral, 2022).

Professional translators typically post-edit texts through computer-assisted translation
(CAT) tools, which are interfaces designed to enhance human translators’ productivity
by providing access to keyboard shortcuts, quality estimation (which we discuss in
Section 2.6) and other assistive technologies (Bowker, 2002). A common functionality
of CATs is the integration of translation memories (TMs), which are bilingual databases
storing previously translated content that can be retrieved and reused for similar seg-
ments, mimicking the functioning of early example-based MT systems (Garcia, 2009).
Additional features often include terminology management systems (termbases) for main-
taining consistency in technical terms and brand names, automatic text segmentation,
and quality assurance modules such as spellcheckers for detecting errors and inconsisten-
cies. Modern CAT tools have evolved from standalone desktop software to cloud-based
platforms accessible via web browsers (Moran et al., 2014; Federico et al., 2014), with
recent surveys indicating that 88% of professional translators use at least one CAT tool
for their work.” While many CAT tools nowadays offer multiple advanced features,
including LLM-based Al assistants, in our user studies of Chapter 8 and Chapter 9, we
employ simple research-oriented interfaces with minimal text editing functionalities
to ensure equal proficiency across subjects. In Chapter 8 we employ PET (Aziz et al.,
2012), a simple desktop-based post-editing tool supporting various languages, while in

"https://go.proz.com/blog/cat-tool-use-by-translators-who-is-using
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Chapter 9 we use a custom-built web interface supporting editing over highlighted
error spans.

2.5.2 MT Evaluation

The industrial context had historically an important influence on MT evaluation prac-
tices, encouraging researchers to focus on evaluation efficiency, combining automatic
metrics with human assessment, and metrics that could provide concrete benefits when
employed in professional translation workflows.

Automatic MT Metrics.  Automatic evaluation metrics for machine translation have
been widely adopted since the early 2000s, with the most popular metrics being BLEU
(Papineni et al., 2002). BLEU is a simple and inexpensive metric measuring lexical
similarity between a candidate translation § and its given reference y as the number of
n-grams G,, = 91,...,0n,92,- -, Unt1, . . . shared between them, normalized by the
total n-gram count:

D (y g) _ ZseGn miH(C(S,ﬂ),C(S,y))
i ZseGn C(S,Q)

where C(s,y) is the count of n-gram s in sequence y. The complete BLEU score

also incorporates a brevity penalty to discourage overly short translations. BLEU is
computed at segment-level for an entire corpus of candidate and reference translations,
and averaged to obtain a corpus-level score. Multiple variants of BLEU have been
proposed to account for length bias, multiple references, with other metrics such as
chrF (Popovi¢, 2015) adopting similar lexicon-based approaches at the character level,
or aligning n-grams across the two sequences (Banerjee and Lavie, 2005). Other lexical
metrics such as the Translation Error Rate (Snover et al., 2006) or Word Error Rate
(WER) have been used to connect the quality of the candidate sequence to the number of
edits required to convert it into the reference, grounding the evaluation in post-editing
technical effort. While these metrics provide rapid assessment of translation quality
with minimal computational overhead, they suffer from several limitations: sensitivity
to lexical variations that may not reflect translation quality differences, poor correlation
with human judgments for high-quality neural MT outputs, and limited generalization
across different writing systems (Bugliarello et al., 2020).

Following calls from the MT research community (Freitag et al., 2022), the limitations
of lexical metrics led to the widespread adoption of learned metrics trained to predict
translation quality from large amounts of annotated examples. Most of the widely
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used learned MT metrics employ transformer-based encoder-only pretrained LMs
such as BERT (Devlin et al., 2019) or the cross-lingual model XLM (Conneau and
Lample, 2019). Among the most notable metrics, BLEURT (Sellam et al., 2020) is a
BERT-based model using multi-task loss on synthetic data to perform regression of
human quality judgments, while comeT (Rei et al., 2020) feeds source text, candidate
and reference translation triples to a dual cross-lingual encoder structure that jointly
learns to estimate quality and rank multiple candidate translations. In most of our
MT evaluations we employ the coMET metric due to its excellent performance across
hundreds of languages, which resulted in top-scoring submissions at multiple WMT
metrics shared tasks (Rei et al., 2020, 2021, 2022a).® However, learned metrics introduce
their own challenges, including non-trivial computational requirements, potential biases
inherited from training data, and questions about generalization to out-of-domain
content (Amrhein and Sennrich, 2022)

Human evaluation of MT. Human evaluation, despite its challenges due to in-
consistencies across annotators, cultural and linguistic biases, and high costs, remains
the gold standard for assessing machine translation quality, providing crucial insights
that automatic metrics may fail to capture (Freitag et al., 2021a). Historically, human
assessment of MT was centered around the notions of adequacy (also accuracy or fidelity),
comprehensibility and fluency (or grammaticality) (White et al., 1994; Callison-Burch
et al., 2007), with adequacy measuring how well the original meaning is conveyed,
comprehensibility reflecting how understandable MT is without the original source,
and fluency judging whether appropriate target grammar is employed (Popovi¢, 2020).
MT evaluation campaigns since 2017 adopted a continuous direct assessment (DA) of
translation quality using scalar ratings— for example, using a 0-100 scale as in Graham
et al. (2013) —or comparative ranking of multiple system outputs (Bojar et al., 2017).

More recently, the introduction of the Multidimensional Quality Metric (MQM)
(Lommel et al., 2013) has provided more structured evaluation protocols. MQM is an
established framework allowing annotators to identify and categorize specific spans
in a translated text as accuracy, fluency, and style issues, and assign them a level of
severity (typically, a 3-way classification into minor/major/critical). Freitag et al. (2021a)
experiments with various scoring configurations, resulting in the scoring formula:

MQM = (# Major Err. x 5) + (# Minor Err. x 1) + (# Punct. Err. x 0.1)

8A comprehensive overview of MT metrics was released by Lee et al. (2023b).
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with higher scores corresponding to worse translation, resulting in a high correlation
with judgments from expert raters. However, such scheme has been criticized due to
its potential length bias, with recent proposals for calibrated and non-linear scoring
models accounting for similar issues (Lommel et al., 2024). An example description of
MQM error categories and severity levels we employed for our study in Chapter 9 is
presented in Table 9.1.

Recent evaluation campaigns such as WMT 2024 (Kocmi et al., 2024a) have increas-
ingly adopted the MQM protocol for their evaluation, emphasizing in particular the
importance of expert vs. non-expert annotators, with studies showing that translation
professionals provide more consistent and reliable judgments compared to crowd-
sourced annotations (Freitag et al., 2021a). The advent of large language models has
introduced new challenges for human evaluation, as the quality gap between human
and machine translation continues to narrow, requiring more fine-grained assessment
criteria and larger annotator pools to achieve reliable results (Kocmi et al., 2024a).
The main limiting factor towards the diffusion of the MQM evaluation protocol is
its cost, since it involves a thorough annotation of error spans. Recently, the Error
Span Annotation (ESA) protocol (Kocmi et al., 2024b) was introduced as a potential
compromise between DA and MQM ratings, soliciting annotators to provide a 0-100
quality rating only after a light pass of error span identification, without requiring a full
MQM error type categorization. The error annotation is intended to prime annotators
to ground their quality judgments in empirical evidence, and ESA scores were observed
to correlate strongly with MQM ones, while being 32% cheaper to obtain (Kocmi et al.,
2024b). For this reason, we adopt a variant of the ESA protocol when conducting the
quality assessment phase of our QE4PE study in Chapter 9. Zouhar et al. (2025) propose
to use a language model to assist in the error span identification process, potentially
further reducing the cost and effort involved in the ESA protocol.

2.6 Quality Estimation for MT

The automatic MT metrics presented in Section 2.5 require the use of a reference
translation to measure the quality of a given candidate. While effective, these metrics
cannot be employed to evaluate translation candidates on the fly, for example before
presenting them to human post-editors, or as a ranking procedure in advanced decoding
strategies (Rei et al., 2022b). Moreover, the presence of low-quality references can lead
to biased evaluations of MT quality that do not reflect the translation quality without
tying it to a specific gold standard (Freitag et al., 2023). Quality estimation metrics
(QE), also known as reference-free MT metrics, are an alternative category of techniques
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designed to address these limitations by predicting translation quality without requiring
reference translations (Specia et al., 2018). Contrary to traditional MT evaluation, QE
can be performed at various levels of granularity. On the one hand, when operating
at the segment or document levels, QE methods typically returns a score between 0 and
1 reflecting the overall quality of the translation, which can be then used to guide
post-editors to focus on problematic segments (Tamchyna, 2021). On the other hand,
word-level QE metrics can provide more granular information about translation issues,
and typically operate by marking individual words with binary 0k/BAD labels or, more
recently, following the severity scheme introduced by the MQM framework.

Initial approaches to QE were mostly based on the uncertainty extracted from MT
models (Blatz et al., 2004; Specia et al., 2009), but with time began focusing on supervised
approaches involving ad-hoc model training (Turchi et al., 2013, 2014; Kepler et al.,
2019; Thompson and Post, 2020, inter alia). Advances in segment- and word-level QE
research are regularly assessed in annual WMT campaigns (Fomicheva et al., 2021;
Zerva et al., 2022, 2024; Blain et al., 2023), where the best-performing QE systems have
recently employed transformer-based language models trained to predict quality scores,
in a fashion similar to reference-based metrics. In particular, reference-less counterparts
to the coMeT models were introduced for QE applications, including a smaller model
for efficient inference (Rei et al., 2022b).

More recently, the widespread adoption of the MQM paradigm and the advances
in LLM capabilities led to new QE metrics predicting quality at various granularity
levels. Notably, Kocmi and Federmann (2023a) prompt GPT-4 with an annotation
scheme mimicking MQM to produce fine-grained quality assessments, from which they
derive a segment-level score, while Fernandes et al. (2023a) develop a similar AutoMQM
framework using the PALM-2 LLM. While these approaches usually employ proprietary
models, Guerreiro et al. (2024) propose a state-of-the-art open-source QE model
extending coMET to jointly predict quality estimation at the word and the sentence
level, combining sentence-level and word-level error span prediction for improved
explainability of results. xcOMET metrics come in a 3.5B (XL) and 10.7B (XXL) size and
support both reference-based and reference-less usage, hence enabling usage for quality
estimation purposes. Concretely, xcoMET models are transformer encoders fine-tuned
from pre-trained XLMR encoders (Goyal et al., 2021) using a mix of sentence-level
Direct Assessment scores and word-level MQM error spans. We use their resulting
systems for our user study of Chapter 9 and our metric comparison in Chapter 10.

Aside from supervised models, a return to unsupervised methods exploiting models
uncertainty and their internal mechanisms was brought on by Fomicheva et al. (2020).
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In their work, such approaches were shown to rival state-of-the-art supervised QE
models in predicting translation quality at the segment level. These methods typically
rely on the model’s confidence in its predictions, often using metrics such as predictive
probability or the entropy of the predictive distribution to mark low-confidence tokens
as potential errors. The appeal of such methods lies in their efficiency, exploiting the
knowledge of the MT model for error detection without requiring additional training
on expensive human annotations. While such methods have been the object of multiple
studies (Dale et al., 2023a; Xu et al., 2023b; Himmi et al., 2024; surveyed by Leiter
et al., 2024), including a shared task dedicated to explainable QE metrics (Fomicheva
et al., 2021), their evaluation was typically focused on segment-level evaluation quality,
with word-level error spans being generally obtained by attributing the predictions of
supervised segment-level metrics (Rubino et al., 2021; Rei et al., 2023). By contrast,
recent work on LLMs evaluates various metrics to detect errors from the generator
model, without additional systems involved, both at the sentence (Fadeeva et al., 2023)
and at the token level (Fadeeva et al., 2024). Our evaluation of Chapter 10 involves
various unsupervised metrics at the word level, employing the edits from our user
studies of previous chapters as sources of word-level error spans to evaluate unsupervised
word-level QE methods across multiple label sets. A notable technique for unsupervised
QE is Monte Catlo Dropout (MCD) (Gal and Ghahramani, 2016). The dropout
mechanism (Srivastava et al., 2014), commonly used for regularization during training,
is employed at inference time by MCD to produce a set of noisy predictions from
a unique model, approximating Bayesian inference. For a given input x, T forward
passes are performed through the network. In each pass ¢t € T, a different random
dropout mask O is applied on model parameters, resulting in slightly different output
probabilities p(x | ©;). The set of T predictions {p(x | ©1),...,p(x | O7)} can be seen
as samples from an approximate posterior distribution. These can be used, for example,
to quantify model uncertainty as the variance of the set of probabilities for a specific
token. We employ such method, showing promising performances in our evaluation
of Chapter 10, to produce unsupervised error highlights for our QE4PE user study in
Chapter 9.

From a practical standpoint, QE methods are widely used in the translation industry
for triaging automatic translations, with integrations in popular CAT tools to present
users with segment-level quality scores (Tamchyna, 2021). While QE usage has been
found helpful to increase the confidence and speed of human assessment (Mehandru
et al., 2023; Zouhar et al., 2025), an incautious usage of these techniques can lead to a
misplaced over-reliance on model predictions (Zouhar et al., 2021a). Moreover, the
effectiveness of QE-assisted post-editing depends critically on the accuracy of quality
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predictions, with inaccurate highlights potentially misleading translators and reducing
overall productivity (Shenoy et al., 2021). Interfaces supporting word-level error
highlights were developed for studying MT post-editing (Coppers et al., 2018; Herbig
et al., 2020) and code reviewing (Sun et al., 2022; Vasconcelos et al., 2025), with results
suggesting that striking the right balance of user-provided information is fundamental
to improve the editing experience and prevent cognitive overload. Our user study of
Chapter 9 is one of few works going beyond accuracy evaluations to measure the actual
impact of word-level QE systems when integrated in human post-editing workflows.
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CHAPTER 3

Attributing Language Model
Generations with the Inseq Toolkit

Chapter Summary

This first experimental chapter presents the Inseq interpretability toolkit, which
is employed for multiple analyses throughout this thesis. Inseq is a Python
library that democratizes access to interpretability analyses of language models
by enabling intuitive extraction of models’ internal information and saliency
scores throughout the generation process. After introducing Inseq design and
features, we demonstrate its capabilities through applications that highlight gender
biases in machine translation models and factual knowledge localization within
the GPT-2 language model. Thanks to its extensible interface, which supports
cutting-edge techniques, Inseq can drive future advances in explainable natural
language generation, centralizing best practices and enabling reproducible model
evaluations.

This chapter is adapted from the papers Inseq: An Interpretability Toolkit for Sequence
Generation Models (Sarti et al., 2023a) and Democratizing Advanced Attribution
Analyses of Generative Language Models with the Inseq Toolkit (Sarti et al., 2024d).

As in manufacture so in science, retooling is an extravagance to be reserved for the
occasion that demands it. The significance of crises is the indication they provide
that an occasion for retooling has arrived.

— Thomas S. Kuhn, The Structure of Scientific Revolutions (1970)
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Recent years saw an increase in studies and tools aimed at improving our behavioral or
mechanistic understanding of neural language models (Belinkov and Glass, 2019).

Many studies applied such techniques to modern deep learning architectures, including
transformers (Vaswani et al., 2017), leveraging gradients (Baehrens et al., 2010; Sun-
dararajan et al., 2017), attention patterns (Xu et al., 2015; Clark et al., 2019) and input
perturbations (Zeiler and Fergus, 2014; Feng et al., 2018) to quantify input importance,
often leading to controversial outcomes in terms of faithfulness, plausibility and overall
usefulness of such explanations (Adebayo et al., 2018; Jain and Wallace, 2019; Jacovi and
Goldberg, 2020; Zafar et al., 2021).

However, input attribution techniques have mainly been applied to classification settings
(Atanasova et al., 2020; Wallace et al., 2020; Madsen et al., 2022a; Chrysostomou
and Aletras, 2022), with relatively little interest in the more convoluted mechanisms
underlying generation. Classification attribution is a single-step process resulting in
one importance score per input token, often allowing for intuitive interpretations in
relation to the predicted class. Sequential attribution’ instead involves a computationally
expensive multi-step iteration producing a matrix A;; representing the importance of
every input i in the prediction of every generation outcome j (Figure 3.1).

Moreover, since previous generation steps causally influence following predictions,
they must be dynamically incorporated into the set of attributed inputs throughout
the process. Lastly, while classification typically involves a limited set of classes and
simple output selection (e.g., argmax after softmax), generation often operates with
large vocabularies and non-trivial decoding strategies (Eikema and Aziz, 2020). These
differences limited the use of input attribution methods for generation settings, with
relatively few works improving attribution efficiency (Vafa et al., 2021; Ferrando et al.,
2022a) and the informativeness of explanations (Yin and Neubig, 2022).

Having established a theoretical background on input attribution methods in Section 2.2,
we introduce Inseq, a Python library that democratizes access to interpretability analyses
of generative language models. Inseq centralizes access to a broad set of input attribution
methods, sourced in part from the Captum (Kokhlikyan et al., 2020) framework,
enabling a fair comparison of different techniques for all sequence-to-sequence and
decoder-only models in the popular & transformers library (Wolf et al., 2020). Thanks
to its intuitive interface, users can easily integrate interpretability analyses into sequence
generation experiments with just 3 lines of code (Figure 3.2). Nevertheless, Inseq is
also highly flexible, including cutting-edge attribution methods with built-in post-

WKe use sequence generation to refer to all iterative tasks, including (but not limited to) natural
language generation.
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Figure 3.1 | Example of Inseq usage with a & transformers causal language model.
Given a prompt, attribution scores and next-step probabilities are extracted from the
model at every generation step, with a final visualization aggregating values at the
token level. Output attribution scores indicate that the model relies on the keyword
“innovate” to initiate the idiomatic expression “think outside the box” with relatively
low confidence (p = 0.5). However, importance shifts to previous tokens in the idiom
and confidence progressively grows throughout the generation.

processing features (Section 3.2.2), supporting customizable attribution targets and
enabling constrained decoding of arbitrary sequences (Section 3.2.3).

In terms of usability, Inseq greatly simplifies access to local and global explanations,
offering built-in support for a command-line interface (CLI), optimized batching that
enables dataset-wide attribution, and various methods for visualizing, serializing, and
reloading attribution outcomes and generated sequences (Section 3.2.4). Ultimately,
Inseq aims to make sequence models first-class citizens in interpretability research and
drive future advances in interpretability for generative applications.

3.1 Related Work

Tools for NLP Interpretability ~ Although many post-hoc interpretability libraries
were released recently, only a few support sequential input attribution. Notably, LIT
(Tenney et al., 2020), a structured framework for analyzing models across modalities,
and Ecco (Alammar, 2021), a library specialized in interactive visualizations of model
internals. LIT is an all-in-one, GUI-based tool for analyzing model behaviors across
entire datasets. However, the library does not provide out-of-the-box support for &
transformers models, requiring the definition of custom wrappers to ensure com-
patibility. Moreover, it has a steep learning curve due to its advanced Ul, which can
be inconvenient when working with a small number of examples. All these factors
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import inseq

# Load model and attrib. method Source Saliency Prefix Saliency
model = inseq.load_model( ’ | _yes [ </s>
"google/flan-t5-base”,
"integrated_gradients”

’_yes ‘</s>

_Does -‘0.153 ‘_yes ’ -

3 ]0.113 10.099 ‘</s>’ ‘

|

) |
# Answer and attribute generation ’
attr_out = model.attribute( ’
!

!

!

+ ]0.096 0.086

"Does 3 + 3 equal 67",
attribute_target=True

_equal - 0.154

6 [0.11 [0.108

_3 [0.006 0.076

)

# Visualize the attribution,
# apply token-level aggregation
attr_out. show()

? ]0.106 \0.114

Figure 3.2 | Computing and visualizing attributions for Flan-T5 (Chung et al., 2024).

limit LIT usability for researchers working with custom models, needing access to
extracted scores, or being less familiar with interpretability research. On the other
hand, Ecco is closer to our work, being based on & transformers and having started
to support encoder-decoder models concurrently with Inseq development. Despite a
marginal overlap in their functionalities, the two libraries provide orthogonal bene-
fits: Inseq’s flexible interface makes it especially suitable for methodical quantitative
analyses involving repeated evaluations, while Ecco excels in qualitative analyses aimed
at visualizing model internals. Other popular tools such as ERASER (DeYoung et al.,
2020), Thermostat (Feldhus et al., 2021), transformers-interpret (Pierse, 2021) and ferret
(Attanasio et al., 2023) do not support sequence models.

3.2 Design

Inseq combines sequence models sourced from & transformers (Wolf et al., 2020) and
attribution methods mainly sourced from Captum (Kokhlikyan et al., 2020). While only
text-based tasks are currently supported, the library’s modular design would enable the
inclusion of other modeling frameworks, e.g. fairseq (Ott et al., 2019), and modalities
(e.g. speech) without requiring substantial redesign. Optional dependencies include #
datasets (Lhoest et al., 2021) and Rich.? Figure 3.3 presents the Inseq hierarchy of
models and attribution methods. The model-method connection enables out-of-the-

2https://github.com/Textualize/rich
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box attribution using the selected method. Framework-specific and architecture-specific

classes enable the extension of Inseq to new modeling architectures and frameworks.

3.2.1 Guiding Principles

* Research and Generation-oriented: Inseq should support interpretability

analyses of a broad set of sequence generation models without focusing narrowly
on specific architectures or tasks. Moreover, the inclusion of new, cutting-edge
methods should be prioritized to enable fair comparisons with well-established
ones.

Scalable: The library should provide an optimized interface to a wide range of
use cases, models and setups, ranging from interactive attributions of individual
examples using toy models to compiling statistics of large language models’
predictions for entire datasets.

Beginner-friendly: Inseq should provide built-in access to popular frameworks
for sequence generation modeling and be fully usable by non-experts at a high
level of abstraction, providing sensible defaults for supported attribution methods.

Extensible: Inseq should support a high degree of customization for experienced
users, with out-of-the-box support for user-defined solutions to enable future
investigations into models’ behaviors.
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Method Source 10!
(Input x) Gradient Simonyan et al. (2014)
DeepLIFT Shrikumar et al. (2016)

G GradientSHAP Lundberg and Lee (2017) X
Integrated Gradients Sundararajan et al. 2017 :
Discretized 1G Sanyal and Ren (2021) X
Sequential IG Enguehard (2023) X

I Attention Weights Bahdanau et al. (2015)

Occlusion (Blank-out) Zeiler and Fergus (2014) X

P LIME Ribeiro et al. (2016) X
Value Zeroing Mobhebbi et al. (2023)

ReAGent Zhao and Shan (2024) X

(Log) Probability -
Softmax Entropy -

S Target Cross-entropy -
Perplexity -
KL Divergence -
Contrastive Logits/Prob. A Yin and Neubig (2022)
# MC Dropout Prob. Gal and Ghahramani (2016)
PCXMI Fernandes et al. (2023)
In-context PVI Lu et al. (2023)

Top-p Tokens

Table 3.1 | Overview of gradient-based (G), internals-based (I) and perturbation-based
(P) attribution methods and built-in step functions (S) available in Inseq. f(I) marks
methods allowing for attribution of arbitrary intermediate layers. Bolded methods
were introduced with Inseq v0.6.

3.2.2 Input Attribution and Post-processing

At its core, Inseq provides a simple interface for applying input attribution techniques
to sequence generation tasks. We categorize methods in three groups, gradient-based,
internals-based and perturbation-based, depending on their underlying approach to im-
portance quantification.’ Table 3.1 presents the complete list of supported methods.
Aside from popular model-agnostic methods, Inseq notably provides built-in support
for attention weight attribution and a range of cutting-edge methods not supported
in any other toolkit, such as Discretized Integrated Gradients (Sanyal and Ren, 2021),
Sequential Integrated Gradients (Enguehard, 2023), Value Zeroing (Mohebbi et al.,

3We distinguish between gradient- and internals-based methods to account for their difference in
scores’ granularity.
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2023), and ReAGent (Zhao and Shan, 2024). Moreover, multiple methods support the
importance attribution of custom intermediate model layers, simplifying studies on
representational structures and information mixing in sequential models, as seen in our
case study of Section 3.3.2.

Source and target-side attribution =~ When using encoder-decoder architectures,
users can set the attribute_target parameter to include or exclude the generated
prefix in the attributed inputs. In most cases, this should be desirable to account for
recently generated tokens when explaining model behaviors, such as when to terminate
the generation (e.g. relying on the presence of _yes in the target prefix to predict </s>
in Figure 3.2, right matrix). However, attributing the source side separately could be
helpful, for example, to derive word alignments from importance scores.

Post-processing of attribution outputs  Aggregation is a fundamental but often
overlooked step in attribution-based analyses since most methods produce neuron-level
or subword-level importance scores that would otherwise be difficult to interpret.
Inseq includes several Aggregator classes to perform attribution aggregation across
various dimensions. For example, the input word Explanation could be tokenized into
two subword tokens Expl and anation, and each token would receive N importance
scores, where N is the model embedding dimension. In this case, aggregators could
first merge subword-level scores into word-level scores, and then merge granular
embedding-level scores to obtain a single token-level score that is easier to interpret.
Moreover, aggregation could prove especially helpful for long-form generation tasks
such as summarization, where word-level importance scores could be aggregated to
obtain a measure of sentence-level relevance. Notably, Inseq allows chaining multiple
aggregators like in the example above using the AggregatorPipeline class, and provides
a PairAggregator to aggregate different attribution maps, simplifying the conduction
of contrastive analyses as in Section 3.3.1.*

3.2.3 Customizing generation and attribution

During attribution, Inseq first generates target tokens using # transformers and then
attributes them step-by-step. If a custom target string is specified alongside model inputs,
the generation step is instead skipped, and the provided text is attributed by constraining
the decoding of its tokens.> Constrained attribution can be used, among other things,

#See Section A.1.2 for an example.
5Users employing constrained decoding should be aware of its limitations in the presence of a high
distributional discrepancy with natural model outputs (Vamvas and Sennrich, 2021b).
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for contrastive comparisons of minimal pairs and to obtain model justifications for
desired outputs.

Custom step functions At every attribution step, Inseq can extract scores of interest
(e.g. probabilities, entropy) that can be useful, among other things, to quantify model
uncertainty (e.g. how likely the generated _yes token was given the context in Fig-
ure 3.2). We collectively refer to functions computing these scores as step functions.
Inseq provides access to multiple built-in step functions (Table 3.1, S), enabling the
computation of these scores, and allows users to create and register new custom ones.
Step scores are computed together with the attribution, returned as separate sequences
in the output, and visualized alongside importance scores (e.g. the p(y:|y<;) row in
Figure 3.1).

Step functions as attribution targets For methods relying on model outputs to
predict input importance (gradient and perturbation-based), input attributions are
commonly obtained from the model’s output logits or class probabilities (Bastings et al.,
2022). However, recent work has shown the effectiveness of using targets, such as
the probability difference of a contrastive output pair, to answer interesting questions
like “What inputs drive the prediction of y rather than §2” (Yin and Neubig, 2022).
For example, the gradient V(p(barking) — p(crying)) given the prompt *“Can you

«

stop the dog from * will highlight the role of the entity dog in selecting barking,

disentangling the semantic component from grammatical correctness by providing a
crying as grammatically valid choice. Figure 3.4 provides an example of such an approach
for gender bias detection in machine translation. Inseq users can leverage any built-in
or custom-defined step function as an attribution target, enabling advanced use cases

like contrastive comparisons.

3.2.4 Usability Features

Batched and span-focused attributions  The library provides built-in batching
capabilities, enabling users to go beyond single sentences and attribute even entire
datasets in a single function call. When the attribution of a specific span of interest is
needed, Inseq also allows specifying a start and end position for the attribution process.
This functionality greatly accelerates the attribution process for studies on localized
phenomena (e.g. pronoun coreference in MT models).

Alignment of contrastive options  Inseq supports customizable word alignments,
i.e. indices aligning tokens in the original and contrastive generated texts, to support
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import inseq

model = inseq.load_model( Generated —
n . C _ _ _aan o
He1§1nk1 NLP/opus-mt-en-it", | Attributed Ho |saluta| to |it» ' [ manager
"saliency”
) I 00| 00 |00/ 0.06 0.0
attr_out = model.attribute( said 00| 00 |00/ 0.08 0.0
I said hi to the manager”, hi [o0o| 00 |00 010 | o0

"Ho salutato il manager”,

contrast_targets=\ to 0.0 0.0 0.0 | 0.05 0.0
"Ho salutato la manager”, the 00| 00 [00] 010 | 00
attributed_fn=\ manager | 0.0 [ 0.0 | 0.0 m 0.0

"contrast_prob_diff",
step_scores=[

"probability"”,

"contrast_prob_diff” Ap 00| 00 |00 066 | 002

</s> 00| 0.0 | 0.0 010 0.0

P(Yely<t)|oss| 081 [0.90] 075 0.28

Figure 3.4 | Source-to-target attributions aggregated at the token level, indicating
the importance of the stereotypical noun “manager” to generate the Italian masculine
pronoun “il” (original) over the feminine “la” (contrastive case).

contrastive comparisons between texts of different lengths, including automatic align-
ments using the multilingual LaBSE encoder (Feng et al., 2022) to streamline their
application.

CLI, serialization and visualization = The Inseq library offers an API to attribute
single examples or entire & Datasets from the command line and save resulting outputs
and visualizations to a file. Attribution outputs can be saved and loaded in JSON format,
along with their respective metadata, to easily identify the provenance of the contents.
Attributions can be visualized in the console or IPython notebooks and exported as
HTML files.

Quantized and distributed attribution  Supporting the attribution of large models
is critical given recent scaling tendencies (Kaplan et al., 2020). All models that allow
for quantization using bitsandbytes (Dettmers et al., 2022) can be loaded directly in
4-bit and 8-bit formats from & transformers, and their attributions can be computed
normally using Inseq at a fraction of the original computational cost.® Relatedly, Inseq

S bitsandbytes ©.37.0 required for backward method, see Section A.1.3 for an example.
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Base Q—d
Tpron  Toce | Tpron Toce
P(Ypron) 0.01 -0.44*
v -0.16 0.25* 0.23* -0.00
IG -0.08 0.09 0.11 0.17

IxG -0.11 0.22* | 0.22* -0.01

Table 3.2 | Gender Bias in Turkish-to-English MT: Kendall’s 7 correlation of MT
model metrics with U.S. labor statistics. * = Significant correlation (p < .05).

is also compatible with the Petals framework (Borzunov et al., 2023), which supports
gradient-based attribution across language models whose computation is distributed
across multiple machines. This can alleviate the need for high-end GPUs to run LLMs,

enabling the distributed computation of attribution scores.”

3.3 Case Studies

3.3.1 Gender Bias in Machine Translation

In the first case study, we use Inseq to investigate gender bias in MT models. Studying
the social biases embedded in these models is crucial to understanding and mitigating
the representational and allocative harms they may engender (Blodgett et al., 2020).
Savoldi et al. (2021) note that the study of bias in MT could benefit from explainability
techniques to identify spurious cues exploited by the model and the interaction of
different features that can lead to intersectional bias.

Synthetic Setup: Turkish to English  The Turkish language uses the gender-
neutral pronoun o, which can be translated into English as either he, she, or it,
making it interesting to study gender bias in MT when associated with a language such
as English, for which models will tend to choose a gendered pronoun form. Previous
works have leveraged translations from gender-neutral languages to demonstrate the
presence of gender bias in translation systems (Cho et al., 2019; Prates et al., 2020;
Farkas and Németh, 2022). We repeat this simple setup using a Turkish-to-English
MarianMT model (Tiedemann, 2020) and compute different metrics to quantify gender
bias using Inseq.

We select 49 Turkish occupation terms verified by a native speaker (see Section A.1.1)
and use them to infill the template sentence O bir ____ (He/She is a(n) ___). For

"Tutorial: https://inseq.org/en/latest/examples/petals.html
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each translation, we compute attribution scores for source Turkish pronoun (zyron)
and occupation (zocc) tokens® when generating the target English pronoun (ron)
using Integrated Gradients (IG), Gradients (V), and Input x Gradient (IxG).” We also
collect target pronoun probabilities (p(ypmn)), rank the 49 occupation terms using these
metrics, and finally compute Kendall’s 7 correlation with the percentage of women
working in the respective fields, using U.S. labor statistics as in previous works (e.g.,
Caliskan et al., 2017; Rudinger et al., 2018). Table 3.2 presents our results.

In the base case, we correlate the different metrics with how much the gender dis-
tribution deviates from an equal distribution (50 — 50%) for each occupation (i.e., the
gender bias irrespective of the direction). We observe a strong gender bias, with she
being chosen only for 5 out of 49 translations and gender-neutral variants never being
produced by the MT model. We find a low correlation between pronoun probability
and the degree of gender stereotype associated with the occupation. Moreover, we note
a weaker correlation for IG compared to the other two methods. For those, attribution
scores for Zocc show significant correlations with labor statistics, supporting the intuition
that the MT model will accord higher importance to source occupation terms associated
to gender-stereotypical occupations when predicting the gendered target pronoun.

In the gender-swap case (¢ — ), we use the PairAggregator class to contrastively
compare attribution scores and probabilities when translating the pronoun as She or
He.!'® We correlate the resulting scores with the percentage of women working in
the respective occupation and find strong correlations for p(ypron), which supports the
validity of contrastive approaches in uncovering gender bias.

Qualitative Example: English to Dutch ~ We also qualitatively analyze biased MT
outputs, showing how attributions can help develop hypotheses about models’ behavior.
Table 3.3 (top) shows the I x G attributions for English-to-Dutch translation using
M2M-100 (Fan et al., 2021).

The model mistranslates the pronoun her into the masculine form ziju (his). We find
that the wrongly translated pronoun exhibits high probability but does not associate
substantial importance to the source occupation term feacher. Instead, we find good
relative importance for the preceding word and leraar (male teacher). This suggests
a strong prior bias for masculine variants, as shown by the pronoun ziju and the
noun leraar, which may be a possible cause for this mistranslation. When considering

8For multi-token occupation terms, e.g., bilim insam (scientist), the first token score was used.

“We set A < 0.05 for IG to ensure convergence. Token-level aggregation is performed using the
L2 norm.

10An example is provided in Section A.1.2.
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Source De leraar  verliest zijn baan
The 0.10 0.08 0.04 0.03 0.02
teacher 0.11 0.20 0.06 0.03 0.05
loses 0.11 0.09 0.25 0.07 0.07
her 0.15 0.09 0.10 0.21 0.07
job 0.10 0.08 0.08 0.10 0.24
Target De leraar  verliest ziijn  baan
De 0.23 0.05 0.06 0.04
leraar 0.17 0.13 0.03
verliest 0.18 0.08
zijn 0.26

p(ye) 0.69 0.28 0.35 0.65 0.29

Source De d— @  verliest haar baan

The 0.00 -0.02 0.00 0.00 0.00
teacher 0.00 -0.05 -0.01 -0.01 -0.01
loses 0.00 -0.02 -0.01 -0.02 -0.01
her 0.00 -0.01 -0.01 -0.10 0.01

job 0.00 -0.02 -0.01 -0.02 -0.02
Target De d— @ verliest haar baan

De -0.07 -0.01 0.01 -0.01
d— 0 0.09 0.18 0.02
verliest -0.03 0.00
haar 0.00

Ap(y) 0.00 -0.23 0.13 0.20 0.00

Table 3.3 | Top: Attribution of pronoun gender mistranslation using M2M-100.
Bottom: Target attribution difference when swapping the target noun gender (& —
@) from leraar (male) to leerkracht (gender-neutral).

the contrastive example obtained by swapping leraar with its gender-neutral variant
leerkracht (Table 3.3, bottom), we find increased importance of the target occupation in
determining the correctly-gendered target pronoun haar (her). Our results highlight
the tendency of MT models to attend inputs sequentially rather than relying on context,
hinting at the known benefits of context-aware models for pronoun translation (Voita
etal., 2018).

3.3.2 Locating Factual Knowledge inside GPT-2

For our second case study, we experiment with a novel attribution-based technique to
locate factual knowledge encoded in the layers of GPT-2 1.5B (Radford et al., 2019).
Specifically, we aim to reproduce the results of Meng et al. (2022), showing the influence
of intermediate layers in mediating the recall of factual statements such as The Eiffel
Tower is located in the city of — Paris. Meng et al. (2022) estimated the effect of network
components in the prediction of factual statements as the difference in probability of a
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First subject token -

0.15
Middle subject tokens - early site
Last subject token - + 0.10
First subsequent token -
Further tokens - late site 0.05
Last token - 0.00

0 5 1015202530 3540 AIE

] ) 0.75

First subject token A
Middle subject tokens - 0.60
Last subject token 0.45
First subsequent token - 0.30
Further tokens - 0.15

Last token
0.00

0 5 101520 25 30 35 40 Layer GxA

Figure 3.5 | Top: Estimated causal importance of GPT-2 XL layers for predicting
factual associations, as reported by Meng et al. (2022). Bottom: Average GPT-2 XL
Gradient x Layer Activation scores obtained with Inseq using contrastive factual pairs
as attribution targets.

correct target (e.g. Paris), given a corrupted subject embedding (e.g. for Eiffel Tower),
before and after restoring clean activations for some input tokens at different layers of
the network. Apart from the obvious importance of final token states in terminal layers,
their results highlight the presence of an early site associated with the last subject token
playing an important role in recalling the network’s factual knowledge (Figure 3.5,
top).

To verify such results, we propose a novel knowledge location method, which we
name Contrastive Attribution Tracing (CAT), adopting the contrastive attribution
paradigm of Yin and Neubig (2022) to locate relevant network components by at-
tributing minimal pairs of correct and wrong factual targets (e.g. Paris vs. Rome for
the example above). To perform contrastive attribution, we use the Layer Gradient x
Activation method, a layer-specific variant of Input x Gradient, to propagate gradients
up to intermediate network activations rather than reaching input tokens. The resulting
attribution scores hence answer the question “How important are layer L activations for
prefix token t in predicting the correct factual target over a wrong one?”. We compute attribu-
tion scores for 1000 statements taken from the Counterfact Statement dataset (Meng
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et al., 2022) and present averaged results in Figure 3.5 (bottom).!! Our results closely
align with those of the original authors, providing additional evidence that attribution
methods can be used to identify salient network components and guide model editing,
as demonstrated by Dai et al. (2022).

We introduced the proposed CAT method shortly before the attribution patching
technique by Nanda (2023). Together, these two methods represent the most efficient
knowledge location techniques based on gradient propagation, with our approach re-
quiring only a single forward and backward pass of the attributed model. Patching-based
approaches, such as causal mediation (Meng et al., 2022), on the other hand, provide
causal guarantees of feature importance at the price of being more computationally
intensive. Despite lacking the causal guarantees of such methods, CAT can provide
an approximation of feature importance and greatly simplify the study of knowledge
encoded in large language model representations, thanks to its efficiency.

3.4 Conclusion

We introduced Inseq, a versatile and easy-to-use toolkit for interpreting sequence
generation models. With many libraries focused on the study of classification models,
Inseq is the first tool explicitly designed to analyze systems for tasks such as machine
translation, code generation, and conversational applications. Researchers can easily
add interpretability evaluations to their studies using our library to identify unwanted
biases and interesting phenomena in their models’ predictions.

With the Inseq toolkit providing the foundational infrastructure for interpretability
analysis, the following chapters will leverage the supported input attribution techniques
to investigate context usage in context-aware machine translation systems Chapter 4
and multilingual language models for retrieval-augmented generation Chapter 5.

Figure A.3 of Section A.1.3 presents some examples.



CHAPTER 4

Quantitying Context Usage in
Neural Machine Translation

Chapter Summary

This chapter investigates how context-aware machine translation models leverage
contextual information. For this purpose, we introduce Plausibility Evaluation
of Context Reliance (PECoRE), an end-to-end interpretability framework de-
signed to quantify context usage in language models’ generations. Our approach
leverages model internals to contrastively identify context-sensitive target tokens
in generated texts and link them to contextual cues justifying their prediction.
We demonstrate the framework’s effectiveness by assessing the plausibility of
context-aware machine translation models, comparing model rationales with
human annotations across several discourse-level phenomena. We integrate
PECoREe in the Inseq toolkit API and apply it to unannotated model outputs to
identify context-mediated predictions and highlight instances of (im)plausible
context usage throughout generation.

This chapter is adapted from the paper Quantifying the Plausibility of Context
Reliance in Neural Machine Translation (Sarti et al., 2024c). Section 4.6 is adapted
from the case study in Democratizing Advanced Attribution Analyses of Generative
Language Models with the Inseq Toolkit (Sarti et al., 2024d).

An interpretation will be meaning ful to the extent that it accurately reflects some
isomorphism to the real world.

— Douglas R. Hofstadter, Gédel, Escher, Bach: An Eternal Golden Braid (1979)

59
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4.1 Introduction

Research in NLP interpretability defines various desiderata for rationales of model be-
haviors, i.e. the contributions of input tokens toward model predictions computed using
input attribution (Madsen et al., 2022b). One such property is plausibility, corresponding
to the alignment between model rationales and salient input words identified by human
annotators (Jacovi and Goldberg, 2020). Low-plausibility rationales typically occur
alongside generalization failures or biased predictions and can be helpful in identifying
cases where models are “right for the wrong reasons” (McCoy et al., 2019).

However, while plausibility has an intuitive interpretation for classification tasks in-
volving a single prediction, extending this methodology to generative language models
presents several challenges. First, LMs have a large output space in which semantically
equivalent tokens (e.g. “PC” and “computer”) are competing candidates for next-word
prediction (Holtzman et al., 2021). Moreover, LMs’ generations are the product of
optimization pressures to ensure independent properties such as semantic relatedness,
topical coherence and grammatical correctness, which can hardly be captured by a
single attribution score (Yin and Neubig, 2022). Finally, since autoregressive gener-
ation involves an iterative prediction process, model rationales could be extracted for
every generated token. This raises the issue of which generated tokens can have plausible
contextual explanations.

Recent attribution techniques for explaining language models incorporate contrastive
alternatives to disentangle different aspects of model predictions (e.g. the choice of “me-
owing” over “screaming” for “The cat is__” is motivated by semantic appropriateness,
but not by grammaticality) (Ferrando et al., 2023; Sarti et al., 2023a). However, these
studies circumvent the issues above by focusing their evaluation on a single generation
step matching a phenomenon of interest. For example, given the sentence “The pictures
of the cat __”, a plausible rationale for the prediction of the word “are” should reflect
the role of “pictures” in subject-verb agreement. While this approach can be helpful to
validate model rationales, it confines plausibility assessment to a small set of handcrafted
benchmarks where tokens with plausible explanations are known in advance. Moreover,
it risks overlooking important patterns of context usage, including those that do not
immediately match linguistic intuitions. In light of this, we suggest that identifying
which generated tokens were most affected by contextual input information should be
an integral part of plausibility evaluation for language generation tasks.

To achieve this goal, we propose a novel interpretability framework, which we dub
Plausibility Evaluation of Context Reliance (PECoRE). PECORE enables the end-to-
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Source texts

Sheep grazed next to the little shepherd .

At sunset, she led them back to the stable.
=

Sentence-level B
& Contextual MT o

Le pecore pascolavano accanto |al pastorello| %
®© @ alla pastorella| v/
Al tramonto, @)L le]/ ricondusse alla stalla.

Figure 4.1 | Examples of sentence-level English—Italian translation with
lack-of-context errors and their correct contextual counterpart. In the con-
textual case context-sensitive source tokens are disambiguated using source () or

target-based (D) to produce correct context-sensitive target tokens.
PECORE enables the end-to-end extraction of cue-target pairs (e.g. she-alla pastorella,
-le).

end extraction of cue-target token pairs consisting of context-sensitive generated tokens
and their respective influential contextual cues from language model generations, as
shown in Figure 4.1. These pairs can uncover context dependence in naturally occur-
ring generations and, for cases where human annotations are available, help quantify
the plausibility of context usage in language models. Importantly, our approach is
compatible with modern attribution methods using contrastive targets (Yin and Neubig,
2022), avoids relying on reference translations to avoid problematic distributional shifts
(Vamvas and Sennrich, 2021b), and can be applied to unannotated inputs to identify
context usage in model generations.

After formalizing our proposed approach in Section 4.3, we apply PECORE to con-
textual machine translation to study the plausibility of context reliance in bilingual
and multilingual MT models. While PECoRE can easily be used alongside encoder-
decoder and decoder-only language models for interpreting context usage in any text
generation task, we focus our evaluation on MT because of its constrained output
space facilitating automatic assessment and the availability of MT datasets annotated
with human rationales of context usage. We thoroughly test PECORE on well-known
discourse phenomena, benchmarking several context sensitivity metrics and attribution
methods to identify cue-target pairs. We conclude by applying PECoRE to unannotated
examples and showcasing some reasonable and questionable cases of context reliance in
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MT model translations.!

In sum, we make the following contributions:

* We introduce PECoRE, an interpretability framework to detect and attribute
context reliance in language models. PECoRE enables a quantitative evaluation of
plausibility for language generation beyond the limited artificial settings explored
in previous literature.

* We compare the effectiveness of context sensitivity metrics and input attribution
methods for context-aware MT, showing the limitations of metrics currently in
use.

* We apply PECORE to naturally-occurring translations to identify interesting
discourse-level phenomena and discuss issues in the context usage abilities of
context-aware MT models.

4.2 Related Work

Context Usage in Language Generation An appropriate2 usage of input informa-
tion is fundamental in tasks such as summarization (Maynez et al., 2020) to ensure the
soundness of generated texts. While appropriateness is traditionally verified post-hoc
using trained models (Durmus et al., 2020; Kryscinski et al., 2020; Goyal and Durrett,
2021), recent interpretability works aim to gauge input influence on model predictions
using internal properties of language models, such as the mixing of contextual informa-
tion across model layers (Kobayashi et al., 2020; Ferrando et al., 2022b; Mohebbi et al.,
2023) or the layer-by-layer refinement of next token predictions (Geva et al., 2022;
Belrose et al., 2023). Recent attribution methods can disentangle factors influencing
generation in language models (Yin and Neubig, 2022) and were successfully used to
detect and mitigate hallucinatory behaviors (Tang et al., 2022; Dale et al., 2023a,b). Our
proposed method adopts this intrinsic perspective to identify context reliance without
ad hoc trained components.

Context Usage in Neural Machine Translation  Despite advances in context-aware
MT (Voita et al., 2018; Voita et al., 2019a; Lopes et al., 2020; Majumder et al., 2022;
Jin et al., 2023; inter alia, surveyed by Maruf et al., 2021), only a few works explored
whether context usage in MT models aligns with human intuition. Notably, some
studies focused on which parts of context inform model predictions, finding that supposedly

1Code: https://github.com/gsarti/pecore
2We avoid using the term faithfulness due to its ambiguous usage in interpretability research.
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context-aware MT models are often incapable of using contextual information (Kim
et al., 2019b; Fernandes et al., 2021) and tend to pay attention to irrelevant words (Voita
et al., 2018), with an overall poor agreement between human annotations and model
rationales (Yin et al., 2021). Other works instead investigated which parts of generated
texts are influenced by context, proposing various contrastive methods to detect gender
biases, over- and under-translations (Vamvas and Sennrich, 2021a, 2022), and to identify
various discourse-level phenomena in MT corpora (Fernandes et al., 2023b). While
these two directions have generally been investigated separately, our work proposes a
unified framework to enable an end-to-end evaluation of context-reliance plausibility
in language models.

Plausibility evaluationin NLP  Plausibility evaluation for NLP models has primarily
focused on classification models (De Young et al., 2020; Atanasova et al., 2020; Attanasio
et al., 2023). While few works investigate plausibility in language generation (Vafa
et al., 2021; Ferrando et al., 2023), such evaluations typically involve a single generation
step to complete a target sentence with a token connected to preceding information
(e.g. subject/verb agreement, as in “The pictures of the cat [is/are]”), effectively biasing the
evaluation by using a pre-selected token of interest. On the contrary, our framework
proposes a more comprehensive evaluation of generation plausibility that includes the
identification of context-sensitive generated tokens as an important prerequisite.

4.3 The PECoRE Framework

PECORE is a two-step framework for identifying context dependence in generative
language models. First, context-sensitive tokens identification (CTI) selects which tokens
among those generated by the model were influenced by the presence of the preceding
context (e.g. the feminine options “alla pastorella, le” in Figure 4.1). Then, contextual cues
imputation (CCI) attributes the prediction of context-sensitive tokens to specific cues in
the provided context (e.g. the feminine cues “she, Le pecore” in Figure 4.1). Cue-target
pairs formed by influenced target tokens and their respective influential context cues
can then be compared to human rationales to assess the models’ plausibility of context
reliance for contextual phenomena of interest. Figure 4.2 provides an overview of the
two steps applied to the context-aware MT setting discussed by this work. A more
general formalization of the framework for language generation is proposed in the
following sections.
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Figure 4.2 | The PECoRE framework applied to an encoder-decoder MT model. Left:
Context-sensitive token identification (CTI). D: A context-aware MT model translates
source context (C,;) and current (z) sentences into target context (Cy) and current (§)
outputs. Q: 9 is force-decoded in the non-contextual setting instead of natural output
g. @: Contrastive metrics are collected throughout the model for every § token to
compare the two settings. @: Selector sc; maps metrics to binary context-sensitive
labels for every ;. Right: Contextual cues imputation (CCI). D: Non-contextual
target §* is generated from contextual prefix j¢. @: Function fe is selected to contrast
model predictions with (g;) and without (§;) input context. @: Attribution method fy
using figr as target scores contextual cues driving ¢ prediction. @: Selector s selects
relevant cues, and cue-target pairs are assembled.

4.3.1 Notation

Let X/ be the sequence of contextual inputs containing N tokens from vocabulary
V, composed by current input z, generation prefix y; and context C. Let X} be

no-ctx

the non-contextual input in which C tokens are excluded.> P = P (z, y<;, C, ) is
the discrete probability distribution over V at generation step i of a language model

with 6 parameters receiving contextual inputs XZ. Similarly, Pi .. = P (x, y<;, 0) is
the distribution obtained from the same model for non-contextual input X/ .. Both

distributions are equivalent to vectors in the probability simplex in RV, and we use
Peux(yi) to denote the probability of next token y; in Pl i.e. P(y; |z, y<i, C).

31n the contextual MT example of Figure 4.2, C includes source context Cy and target context Cyy.
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4.3.2 Context-sensitive Token Identification (CTI)

CTT adapts the contrastive conditioning paradigm proposed by Vamvas and Sennrich
(2021a) to detect input context influence on model predictions using the contrastive
pair P, Pl .. Both distributions are relative to the contextual target sentence
9 = {f1...0n}, corresponding to the sequence produced by a decoding strategy of
choice in the presence of input context. In Figure 4.2, the contextual target sentence
§ = “Sont-elles a I'hotel?” is generated when  and contexts C,, Cyy are provided
as inputs, while non-contextual target sentence § = “Ils sont a I'hotel?” would be
produced when only x is provided. In the latter case, § is instead force-decoded from the
non-contextual setting to enable a direct comparison of matching outputs. We define
a set of contrastive metrics M = {my1,...,mar}, where each m : Ap,; x Ay = R
maps a contrastive pair of probability vectors to a continuous score. For example,
the difference in next token probabilities for contextual and non-contextual settings,
ie. Pyg(9i) = Pex(9i) — Pao-cex(§), might be used for this purpose.* Target tokens
with high contrastive metric scores can be identified as context-sensitive, provided C
is the only added parameter in the contextual setting. Finally, a selector function
sci : RIMI i {0, 1} (e.g. a statistical threshold selecting salient scores) is used to classify
every fj; as context-sensitive or not.

4.3.3 Contextual Cues Imputation (CCI)

CClI applies the contrastive attribution paradigm (Yin and Neubig, 2022) to trace the
generation of every context-sensitive token in § back to the context C, identifying the
cues that drive model predictions.

Definition 4.3.1. Let s, s’ be the resulting scores of two attribution target functions
Jeges ft’gt. An attribution method fy is target-dependent if importance scores A are
computed in relation to the outcome of its attribution target function, i.e. whenever
the following condition is verified.

fatt(myy<tvc797 S) 7é fatt(x7y<t7 07678l) Vs # Sl

In practice, common gradient-based attribution approaches (Simonyan et al., 2014;
Sundararajan et al., 2017) are target-dependent as they rely on the outcome predicted
by the model (typically the logit or the probability of the predicted class) as the dif-
ferentiation target to backpropagate importance to model input features. Similarly,

*We use m® to denote the result of m(PZ,, P},

% o) Several metrics are presented in Section 4.4.2.
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perturbation-based approaches (Zeiler and Fergus, 2014) use the variation in prediction
probability for the predicted class when noise is added to some of the model inputs to
quantify the importance of the noised features.

On the contrary, recent approaches that rely solely on model internals to define input
importance are generally target-insensitive. For example, attention weights used as model
rationales, either in their raw form or after a rollout procedure to obtain a unified score
(Abnar and Zuidema, 2020), are independent of the predicted outcome. Similarly, value
zeroing scores (Mohebbi et al., 2023) reflect only the representational dissimilarity
across model layers before and after zeroing value vectors, and as such do not explicitly
account for model predictions.

Definition 4.3.2. Let 7 be the set of indices corresponding to context-sensitive tokens
identified by the CTT step, such that ¢ € g and V¢ € T, sqi(m}, ..., mb,) = 1. Let also
fege : Ay x- - - = R be a contrastive attribution target function representing an attri-
bution target of interest, for example, the difference in next-token probabilities between
the contextual option ¢, and the non-contextual option g; from the same contextual
distribution P%, plus any additional required parameter. The contrastive attribution
method fy is a composite function quantifying the importance of contextual inputs to
determine the output of fi for a given model with § parameters.

fatt(gjt) = .fatt($7ﬂ<t7 C: 07 .ftgt) = fatt (ZE’, ﬁ<t7 Ca 0: .ftgt(Pcttm s ))

Remark 4.3.1. The non-contextual next token §; can be computed using the contex-
tual prefix g<; = {91, ..., 91} (e.g. §<¢ =“Sont-" in Figure 4.2) and non-contextual
inputs X}

no-ctx*

This is conceptually equivalent to predicting the next token of a new
non-contextual sequence §* which, contrary to the original g, starts from a forced
contextual prefix j<; (e.g. “ils” in §* = “Sont-ils 2 'hotel?” in Figure 4.2).

Remark 4.3.2. A f, making use of both P/ and P, ., e.g. the KL divergence be-
tween the contextual and non-contextual probability distributions (Kullback and Leibler,
1951), can ultimately result in non-zero fu(g:) scores, even when §; = §;, i.e. even
when the next predicted token is the same, since probabilities Peex(9¢), Pro—cta (37 ) are
likely to differ beyond top-1 predictions. This is a desirable property of fy, as it allows
the attribution method to capture the influence of context on the model’s decision-
making process, even in the case where the predicted token remains unchanged.

Remark 4.3.3. Our formalization of f,. generalizes the method proposed by Yin and
Neubig (2022) to support any target-dependent attribution method, such as popular
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gradient-based approaches (Simonyan et al., 2014; Sundararajan et al., 2017), and any
contrastive attribution target ftgt.

Jfaee produces a sequence of attribution scores A; = {a1, ..., ax} matching contextual
input length N. From those, only the subset A; . of scores corresponding to context
input sequence C are passed to selector function s : R — {0, 1}, which predicts a
set C; of indices corresponding to contextual cues identified by CCI, such that Ve €
Ct,Va € Apcrxs Scailae) = 1.

Having collected all context-sensitive generated token indices 7 using CTI and their
contextual cues through CCI (C;), PECoRE ultimately returns a sequence S, of all
identified cue-target pairs:

T = CTI(C,2,9,0, M, 5c) = {t | sci(m},...,mb,) =1}
C= CCI(T7 071“7@307 fatnftgn Scci) = {C ‘ Scci(ac) =1Va, € AtctX7Vt S T}
S = PECoRe(C, x, 0, Scii, Sccis M, fare, frgr) = {(Ce, §¢) | VE € T, Ve € Cy,VCy € C}

A pseudocode implementation for the PECORE algorithm is provided in Algorithm 1.
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Algorithm 1 PECoRe cue-target extraction process

Require: C,z (Input context and current sequences), 6 (Model parameters), sc, Scci
(Selector functions), M (Contrastive metrics), fu (Contrastive attribution method),
Jege (Contrastive attribution target function)
1: procedure PECORE(C, %0, Scci, Sccis M, faces fege)
2 ) = generate(C, z, ) using any decoding strategy and parameters
3 T =CTIC,z,9,0, M, s)
4 forallt € T do
5: Cy = CCI(t, C, 2,5, 0, fues frger Secl)
6 forallc € C, do
7 Store (Cf, §;) in S
8 end for
9 end for
10: return S, // Set of cue-target pairs
11: end procedure
12: procedure CTI(C, z, 9,0, M, Scq)

13: T = 0 // Empty set for context-sensitive indices of § tokens
14: for all §; € § do

15: for allm € M do

16: m' = m(Pctx(gjz)7 Pno—ctx(:gi))

17: end for

18: if (sci(mt,...,m%;) = 1) then

19: Store 7 in set T~

20: end if

21: end for

22: return T

23: end procedure
24: procedure CCI(t, C, x, 9,0, fuc, frgr> Scci)

25: C; = 0 // Empty set for contextual cues for target token ¢

26: Generate constrained non-contextual target current sequence §* from <,

27: Use attribution method fu with target fg to get importance scores A;

28: Identify the subset A; .« corresponding to tokens of context C' = {C1,...,Ck}
29: foralla; € Ajx = {a1,...,ax} do

30: if sei(a;) = 1 then

31: Store C; in Cy

32: end if

33: end for

34: return C;

35: end procedure
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4.4 Context Reliance Plausibility in Context-aware MT

This section describes our evaluation of PECoRE in a controlled setup. We experiment
with several contrastive metrics and attribution methods for CTTand CCI (Section 4.4.2,
Section 4.4.5), evaluating them in isolation to quantify the performance of individual
components. An end-to-end evaluation is also performed in Section 4.4.5 to establish
the applicability of PECoRE in a naturalistic setting.

4.4.1 Experimental Setup

Evaluation Datasets  Evaluating generation plausibility requires human annotations
for context-sensitive tokens in target sentences and disambiguating cues in their preced-
ing context. To our knowledge, the SCAT dataset (Yin et al., 2021) is the only resource
matching these requirements. SCAT is an English—French corpus with human an-
notations of anaphoric pronouns and disambiguating context on OpenSubtitles2018
dialogue translations (Lison et al., 2018; Lopes et al., 2020). SCAT examples were
extracted automatically using lexical heuristics and thus contain only a limited set of
anaphoric pronouns (it, they — il/elle, ils/elles), with no guarantees of contextual cues
being found in preceding context.

The original SCAT test set contains 1000 examples with automatically identified
context-sensitive pronouns it/they (marked by <p>...</p>) and human-annotated
contextual cues aiding their disambiguation (marked by <hon>...</hoff>). Of these,
we find 38 examples containing malformed tags and several more examples where
an unrelated word containing if or they was wrongly marked as context-sensitive
(e.g. the soccer ball h<p>it</p> your chest). Moreover, due to the original ex-
traction process adopted for SCAT, there is no guarantee that contextual cues will be
contained in the preceding context, as they could also appear in the same sentence,
defeating the purpose of our context usage evaluation. Thus, we prefilter the entire
corpus to retain only sentences with well-formed tags and inter-sentential contextual
cues identified by the original annotators. Moreover, a manual inspection procedure is
carried out to validate the original cue tags and discard problematic sentences, obtaining
a final set of 250 examples with inter-sentential pronoun coreference, which we name
SCAT+>.

Additionally, we manually annotate contextual cues in DiscEvaL-MT (Bawden et al.,
2018), another English—French corpus containing handcrafted examples for anaphora
resolution (aNA) and lexical choice (LEx). In the case of DiscEvaL-MT, we use minimal

SSCAT+ is available on the Hugging Face Hub: inseq/scat


https://hf.co/datasets/inseq/scat

70 4. Quantifying Context Usage in Neural Machine Translation

pairs in the original dataset to automatically mark differing tokens as context-sensitive.
Then, contextual cues are manually labeled separately by two annotators with good
familiarity with both English and French. Cue annotations are compared across the two
splits, resulting in very high agreement due the simplicity of the corpus (97% overlap
for ana, 90% for LEX).0

Our final evaluation set contains 250 SCAT+ and 400 DiscEvaL-MT translations across
two discourse phenomena. Table 4.1 provides some examples for the three data splits.

Models  We evaluate two bilingual Opus models (Tiedemann and Thottingal, 2020)
using the transformer base architecture (Vaswani et al., 2017, Small and Large), and
mBART-50 1-to-many (Tang et al., 2021), a larger multilingual MT model supporting
50 target languages, using the & transformers library (Wolf et al., 2020). We fine-tune
models using extended translation units (Tiedemann and Scherrer, 2017) with con-
textual inputs marked by break tags such as source context <brk> source current
to produce translations in the format target context <brk> target current, where
context and current target sentences are generated. We perform context-aware fine-
tuning on 242k IWSLT 2017 English—French examples (Cettolo et al., 2017), using
a dynamic context size of 0-4 preceding sentences to ensure robustness to different
context lengths and allow contextless usage. To further improve models’ context sensi-
tivity, we continue fine-tuning on the SCAT training split, containing 11k examples
with inter- and intra-sentential pronoun anaphora.

Model Disambiguation Accuracy ~ We estimate contextual disambiguation accuracy
by verifying whether annotated (gold) context-sensitive words are found in model
outputs. Results before and after context-aware fine-tuning are shown in Table 4.2.
We find that fine-tuning improves translation quality and disambiguation accuracy
across all tested models, with larger gains for anaphora resolution datasets that closely
match the fine-tuning data. To gain further insight into these results, we use context-
aware models to translate examples with and without context and identify a subset of
context-sensitive translations (0k-cs) for which the correct target word is generated only
when input context is provided to the model. Interestingly, we find a non-negligible
amount of translations that are correctly disambiguated even in the absence of input
context (corresponding to ok minus ok-cs in Table 4.2). For these examples, the correct
prediction of ambiguous words aligns with model biases, such as defaulting to masculine
gender for anaphoric pronouns (Stanovsky et al., 2019) or using the most frequent sense

®Our modified version of DiscEva,-MT is available on the Hugging Face Hub:
inseq/disc_eval_mt.


https://hf.co/datasets/inseq/disc_eval_mt
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SCAT+

Cy : 1loathe that [song. But why did you bite poor Birdie’s head off? Because I've heard it more
times than I care to. It haunts me. Just stop, for a moment.

Cy : Je hais cette |chanson . Mais pourquoi avoir parlé ainsi 2 la pauvre Birdie ?
Parce que j’ai entendu ce chant plus que de fois que je ne le peux. Elle me hante. Arrétez-vous
un moment.

x : How does /it haunt you?

y : Comment peut- elle vous hanter?

Cy: - Ah! Sven! It’s been so long. - Riley, it’s good to see you. - You, too. How’s the boat? Uh,
it creaks, /it groans.

Cy : Sven ! - Riley, contente de te voir. - Content aussi. Comment va le |bateau
1l craque de partout.

2 : Not as fast as it used to be.

-~

y: n’est pas aussi rapide qu’avant.

DiscEvarL-MT aNa

Cy : But how do you know the [woman' isn’t going to turn out like all the others?

Cly : Mais comment tu sais que la femme ne finira pas comme toutes les autres?
z : This one s different.

y : Celle-ci est différente.

Cy : Can you authenticate these signatures, please?

Cy : Pourriez-vous authentifier ces signatures , s'il vous plait?
x : Yes, they’re imines.

y : Oui, ce sont les /miennes

DiscEvarL-MT LEx

Cy : Do you think you can shoot it from here?

Cy : Tu penses que tu peux le 'tirer dessus a partir d’ici?
z : Hand me that bow .

y : Passe-moi cet [arc

Cy : Can I help you with the ‘wrapping ?

Cy : Est-ce que je peux t’aider pour I ’emballage ?
2 : Hand me that bow .

y : Passe-moi ce ruban

Table 4.1 | Examples from the SCAT+ and DiscEvaL-MT datasets used in our analysis
with highlighted 'context-sensitive tokens and contextual cues used for plausibility
evaluation using PECORE. are added for French words of interest to facilitate
understanding.
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SCAT+ DiscEvar-MT (ana) DiscEvar-MT (Lex)
Model Bieu ok oOk-cs BIEU Ok oOk-cs BIEU OK OK-Cs
Opus Small (a’ef) 29.1 0.14 - 43.9 0.40 - 30.5 0.29 -

Opus Small S+T«  39.1 0.81 0.59 48.1 0.60 0.24 33,5 0.36  0.07

Opus Large (def)  29.0 0.16 - 392 041 - 312 031 -
Opus Large S+Tcx  40.3 0.83 0.58 489 0.68 031  34.8 0.38 0.10

mBART-50 (def) 238 026 - 334 042 - 245 025 -
mBART-50 $+Te 37.6 0.82 055 49.0 0.62 032 293 030 0.07

Table 4.2 | Translation quality of English—French MT models before (def,) and after
(S+T ) context-aware MT fine-tuning. ok: % of translations with correct disam-
biguation for discourse phenomena. ok-cs: % of translations where the correct disam-
biguation is achieved only when context is provided.

for word sense disambiguation. Provided that such examples are unlikely to exhibit
context reliance, we focus particularly on the ok-cs subset results in our following
evaluation.

4.4.2 Metrics for Context-sensitive Target Identification

The following contrastive metrics are evaluated for detecting context-sensitive tokens
in the CTI step.

Relative Context Saliency We use contrastive gradient norm attribution (Yin and
Neubig, 2022) to compute input importance towards predicting the next token ¢;
with and without input context. Positive importance scores are obtained for every
input token using the L2 gradient vectors norm (Bastings et al., 2022), and relative
context saliency is obtained as the proportion between the normalized importance for
context tokens ¢ € C,, Cy, and the overall input importance, following previous work
quantifying MT input contributions (Voita et al., 2021; Ferrando et al., 2022a; Edman
et al., 2024).

Pi’ ) _ ZCECz,Cy va (Pctx(gi) - Pno—ctx(qji)) H
nomex ZtEXZm ‘Vt (Pctx(@i) - Pno—ctx(gi)) ||
Likelihood Ratio (LR) and Pointwise Contextual Cross-mutual Information

(P-CXMI) Proposed by Vamvas and Sennrich (2021a) and Fernandes et al. (2023b),
respectively, both metrics frame context dependence as a ratio of contextual and non-

V(P

ctx?

contextual probabilities.
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Pe ( i)
LR(Preys Prowerx) = j
(Peeo> Pro-cex) P (9:) + Poo-cex (9:)
P CXMI Pz Pl _ 1 CtX( )
( Ctx? * no— ctx) - Og (@ )
nO CtX

and P!

no-ctx

KL-Divergence (Kullback and Leibler, 1951) between P

Cctx

is the only
metric we evaluate that considers the full distribution rather than the probability of the
predicted token. We include it to test the intuition that the impact of context inclusion
might extend beyond top-1 token probabilities.

Dit (Pl Pl = 3 Pl log 33 20
Giev no ctx (y )

4.4.3 Plausibility Evaluation Metrics

In practice, the CTI and CCI steps in PECoRE produce a sequence of continuous scores
that are later binarized using selectors se, scci, introduced in Section 4.3. To evaluate
their validity, those are compared to a sequence I}, of the same length containing binary
values, where 1s correspond to the cues identified by human annotators, while the rest
are set to 0. In our experiments, we use two standard plausibility metrics introduced by
DeYoung et al. (2020):

Token-level Macro F1 is the harmonic mean of precision and recall at the token
level, using 1), as the ground truth and the post-selector binarized scores as predictions.
Macro-averaging is used to account for the sparsity of cues in I;. We use this metric in
our primary analysis, as the discretization step is more likely to reflect realistic plausibility
performance, since it matches more closely the annotation process used to derive I.
We note that Macro F1 can be considered a lower bound for plausibility, as the results
depend heavily on the choice of the selector used for discretization.

Area Under Precision-Recall Curve (AUPRC) is computed as the area under the
curve obtained by varying a threshold over token importance scores and computing
the precision and recall for resulting discretized I,,, predictions while keeping Ij, as the
ground truth. Contrary to Macro F1, AUPRC is selector-independent and accounts for
tokens’ relative ranking and degree of importance. Consequently, it acts as an upper
bound for plausibility, as if the optimal selector was used. Results using AUPRC are
presented in Section A.2.2 for completeness, but we focus on Macro F1 in the primary
analysis.
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Figure 4.3 | Macro F1 of contrastive metrics for context-sensitive target token identifi-
cation (CTI) using Opus Large on the full datasets (left) or on ok-cs context-sensitive

subsets (right).

4.4.4 CTI Plausibility Results

Figure 4.3 presents our metrics evaluation for CTI, with results for the full test sets and
the subsets of context-sensitive sentences (ok-cs) highlighted in Table 4.2. To keep our
evaluation simple, we use a naive s.; selector tagging all tokens with metric scores one
standard deviation above the per-example mean as context-sensitive. We also include a
stratified random baseline matching the frequency of occurrence of context-sensitive
tokens in each dataset. Datapoints in Figure 4.3 are sentence-level macro F1 scores
computed for every dataset example.

Pointwise metrics (LR, P-CXMI) show high plausibility for the context-sensitive subsets
ok-cs across all datasets and models, but achieve lower performances on the full test
set, especially for lexical choice phenomena less present in MT models’ training. KL-
Divergence performs on par with or better than pointwise metrics, suggesting that
distributional shifts beyond top prediction candidates can provide helpful information for
detecting context sensitivity. On the contrary, the poor performance of context saliency
suggests that aggregate context reliance cannot reliably predict context sensitivity. A
manual examination of misclassified examples reveals several context-sensitive tokens
that were not annotated as such, as they did not match the dataset’s phenomena of
interest, but were still identified by CTI metrics. Table 4.3 presents several examples
illustrating the contextual influence of French pronoun formality, whereas SCAT+
examples focus solely on gender disambiguation for anaphoric pronouns. This suggests
that our evaluation of CTI metrics’ plausibility can be considered a lower bound for
actual method accuracy, as it is restricted to the two phenomena available in the datasets
we used (anaphora resolution and lexical choice), rather than the broad set of contextual
dependence phenomena. These results further underscore the importance of data-
driven, end-to-end approaches like PECORE in limiting the influence of selection bias
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Pronoun Grammatical Formality, SCAT+

C, : [...] That demon that was in you, it wants you. But not like before. I think it loves you.

Cy :[...] Ce démon qui était en [vous), il [vous' veut. Mais pas comme avant. Je pense qu'il [vous| aime.
x : And it’s powerless without you.

y : Bt il est impuissant sans 'vous

Cj : You threaten my father again, I'll kill you myself... on this road. You hear me?

Cy : 'Tu menaces encore mon pére, je [t tuerai moi-méme... sur cette route. Tu m’entends?
x : Now it is with you as well.

y : Maintenant elle est aussi avec toi

C, : She went back to Delhi. What do you think? [...] Girls, I tell you.
C : Elle est revenue a Delhi. Qu'en penses-[tii’? [...] Les filles, je [tel le dis.
x : I wish they were all like you.

y : Jaimerais qu’elles soient toutes comme toi

Table 4.3 | Examples of SCAT+ sentences with context-sensitive target tokens iden-
tified by CTI but not originally labeled as context-dependent in the dataset, since
they do not match the gendered pronoun rule match used to create SCAT+. Relevant
formality contextual cues are highlighted, and are added for French words of
interest to facilitate understanding.

during evaluation.

4.4.5 Methods for Contextual Cues Imputation

The following attribution methods are evaluated for detecting contextual cues in the
CClI step.

Contrastive Gradient Norm (Yin and Neubig, 2022) estimates the input tokens’
contributions towards predicting a target token, rather than a contrastive alternative.
We use this method to explain the generation of context-sensitive tokens in the presence

and absence of context.

At = { ”Vc(ftgt(Pcitm S ))H |VC S C}

For the choice of fi, we evaluate both probability difference Pe(%:) — Pao-cex (%),
conceptually similar to the original formulation, and the KL-Divergence of contextual
and non-contextual distributions Dy (Pl || Pl ). We use Vggand Vi to identify
gradient norm attribution in the two settings. Vi scores can be seen as the contribution
of input tokens towards the shift in probability distribution caused by the presence of
input context.”

7Provided that Pho-cex (1) does not depend on context, the Vg gradient is functionally equivalent
to the gradient for the cross-entropy function H (Perx, Pao-cx) = — Zy v Perx(9:) 108 Pro-cex (93))-
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Figure 4.4 | Macro F1 of CCI methods over full datasets using Opus Large models
trained with only source context (left) or with source+target context (right). Boxes
and red median lines show CCI results based on gold context-sensitive tokens. Dotted
bars show median CCI scores obtained from context-sensitive tokens identified by
KL-Divergence during CTI (E2E settings).

Attention Weights  Following previous work, we use the mean attention weight
across all heads and layers (Attention Mean, Kim et al. (2019b)) and the weight for the
head obtaining the highest plausibility per-dataset (Attention Best, Yin et al. (2021))
as importance measures for CCIL. Attention Best can be seen as a best-case estimate
of attention performance but is not a viable metric in real settings, provided that the
best attention head to capture a phenomenon of interest is unknown beforehand. Since
attention weights are model byproducts unaffected by predicted outputs, we use only
attention scores for the contextual setting P!, and ignore the contextless alternative
when using these metrics.

4.4.6 CCI Plausibility Results

We conduct a controlled CCI evaluation using gold context-sensitive tokens as the
starting point to attribute contextual cues. Provided that gold context-sensitive tokens
are only available in annotated reference translations, a simple option when applying
CCI to those would involve using references as model generations. However, this
was shown to be problematic by previous research, as it would induce a distributional
discrepancy in model predictions (Vamvas and Sennrich, 2021b). For this reason, we let
the model generate a natural translation and instead try to align tags to this new sentence
using the awesoMmEe aligner (Dou and Neubig, 2021) with Lasse multilingual embeddings
(Feng et al., 2022). While this process is not guaranteed to always result in accurate tags,
it provides a good approximation of gold CTI annotations for model generation, which
is suitable for our assessment. This corresponds to the baseline plausibility evaluation
described in Section 2.2.2, allowing us to evaluate attribution methods in isolation,
assuming perfect identification of context-sensitive tokens. Figure 4.4 presents our
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results. Scores in the right plot are relative to the context-aware Opus Large model
of Section 4.4.4 using both source and target context. Instead, the left plot presents
results for an alternative version of the same model that was fine-tuned using only
the source context (i.e., translating C,,, # — y without producing the target context
C,). Source-only context was used in previous context-aware MT studies (Fernandes
et al., 2022), and we include it in our analysis to assess how the presence of target
context impacts model plausibility. We finally validate the end-to-end plausibility of
PECoRE-detected pairs using context-sensitive tokens identified by the best CTI metric
from Section 4.4.4 (KL-Divergence) as the starting point for CCI, and using a simple
statistical selector equivalent to the one used for CTI evaluation.

First, contextual cues are more easily detected for the source-only model using all
evaluated methods. This finding corroborates previous evidence highlighting how
context usage issues might emerge when lengthy context is provided (Fernandes et al.,
2021; Shi et al., 2023). When moving from gold CTI tags to the end-to-end setting
(E2E) we observe a larger drop in plausibility for the SCAT+ and DiscEvaL-MT ana
datasets that more closely match the fine-tuning data of analyzed MT models. This
suggests that standard evaluation practices may overestimate model plausibility for
in-domain settings and that our proposed framework can effectively mitigate this
issue. Interestingly, the Attention Best method suffers the most from end-to-end CCI
application, while other approaches are more mildly affected. This can result from
attention heads failing to generalize to other discourse-level phenomena at test time,
providing further evidence of the limitations of attention as an explanatory metric (Jain
and Wallace, 2019; Bastings and Filippova, 2020). While V ¢ and Vg1 appear as the
most robust choices across the two datasets, per-example variability remains high across
the board, leaving space for improvement for more plausible attribution methods in
future work.

4.5 Detecting Context Reliance in the Wild

We continue our analysis by applying the PECoRe method to the popular Flores-101
MT benchmark (Goyal et al., 2022), containing groups of 3-5 contiguous sentences
from English Wikipedia. While previous sections used labeled examples to evaluate
the effectiveness of PECoRE components, here we apply our framework end-to-end
to unannotated MT outputs and inspect the resulting cue-target pairs to identify the
successes and failures of context-aware MT models.

Specifically, we apply PECORE to the context-aware Opus Large and mBART-50
models of Section 4.4.1, using KL-Divergence as CTI metric and Vi as CCl attribution
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1. Acronym Translation (English — French, correct but more generic)

Cy : Across the United States of America, there are approximately 400,000 known cases of
Multiple Sclerosis (MS) [...]

Cy : Aux Etats-Unis, il y a environ 400 000 cas connus de sclérose en plaques [...]

x : MS affects the central nervous system, which is made up of the brain, the spinal cord and the optic nerve.

: [La SEP affecte le systéme nerveux central, composé du cerveau, de la moelle épiniére et du nerf optique.

: La maladie affecte le systéme nerveux central, composé du cerveau, de la moelle épiniére et du nerf optique.

N[ @

. Anaphora Resolution (English — French, incorrect)

» ¢ The terrified King and Madam Elizabeth were forced back to Paris by a /mob of imarket women .

y : Le roi et Madame Elizabeth ont été forcés a revenir 4 Paris par une foule de femmes du marché.

: In a carriage, they traveled back to Paris surrounded by a mob of people screaming and shouting threats [...]
: Dans une carriole, lils sont retournés a Paris entourés d’une foule de gens hurlanc et criant des menaces [...]

© @8 QQ

: Dans une carriole, elles sont refournées a Paris entourées d’une foule de gens hurlant et criant des menaces [...]

Table 4.4 | Flores-101 examples with cue-target pairs identified by PECoRE in Opus
Large contextual translations. Context-sensitive tokens generated instead of their
non-contextual counterparts are identified by CTI, and contextual cues justifying
their predictions are retrieved by CCI. Other changes in §) are not considered context-
sensitive by PECORE.

method. We set sqi and sei to two standard deviations above the per-example average
score to focus our analysis on very salient tokens.

Table 4.4 and Table 4.5 show some examples annotated with PECoRE outputs. In the
first example, the acronym MS, standing for Multiple Sclerosis, is translated generically
as la maladie (the illness) in the contextual output, but as SEP (the French acronym
for MS, i.e. sclérose en plaques) when context is not provided. PECoRE shows how this
choice is mostly driven by the MS mention in source context C;, while the term sclérose
en plaques in target context Cy, is not identified as influential, possibly motivating the
choice for the more generic option.

In the second example, the prediction of pronoun elles (they, feminine) depends on
the context noun phrase mob of market women (foule de femmes du marché in French).
However, the correct pronoun referent is Le roi et Madame Elizabeth (the king and
Madam Elizabeth), so the pronoun should be the masculine default ils, commonly used
for mixed-gender groups in French. PECoRE identifies this as a context-dependent
failure due to an issue with the MT model’s anaphora resolution.

The third example presents an interesting case of erroneous numeric format cohesion
that would typically go undetected when relying on pre-defined linguistic hypotheses.
In this sentence, the score 26-00 is translated as 26 in the contextless output and as
26:00 in the context-aware translation. The 10:00 time indications found by PECoRe
in the contexts suggest this is a case of problematic lexical cohesion.
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3. Numeric format cohesion (English — French, incorrect)

Cy : The games kicked off at [10:00 am with great weather apart from mid morning drizzle [...]
Cy : Les matchs se sont écoulés 2 [10:00 du matin avec un beau temps 2 part la nuée du matin [...]

x : South Africa started on the right note when they had a comfortable 26-00 win against Zambia.

7 : L’Afrique du Sud a commencé sur la bonne note quand ils ont eu une confortable victoire de (26 contre le
Zambia.

9 : L'Afrique du Sud a commencé sur la bonne note quand ils ont eu une confortable victoire de 26:00 contre le
Zambia.

4. Lexical cohesion (English — Turkish, correct)

Cy : The activity of all stars in the system was found to be driven by their luminosity, their rotation, and nothing
else.

Cy : Sistemdeki biitiin ulduzlarin faaliyetlerinin, parlakliklari, rotasyonlart ve bagka hicbir seyin etkisi altinda
oldugunu ortaya ¢ikardilar.

x : The luminosity and rotation are used together to determine a star’s Rossby number, which is related to
plasma flow.

 : Parlaklik ve |déngii , bir yildizin plazm akisyla ilgili Rossby saysini belirlemek igin birlikte kullanihyor.

9§ : Parlaklik ve rotasyon, bir ulduzun plazma akisyla ilgili Rossby sayisini belirlemek i¢in birlikte kullaniliyor.

Table 4.5 | Flores-101 examples with cue-target pairs identified by PECoRE in
mBART-50 contextual translations. Context-sensitive tokens generated instead of
their lnon-contextual counterparts are identified by CTI, and \contextual cues justi-
fying their predictions are retrieved by CCI. Other changes in § are not considered
context-sensitive by PECoRE.

Finally, we include an example of context usage for English—Turkish translation to
test the contextual capabilities of the default mBART-50 model without context-aware
fine-tuning. Again, PECoRE shows how the word rotasyon (rotation) is selected over
déngii (loop) as the correct translation in the contextual case due to the presence of the
lexically similar word rotasyonlar: in the previous context.

4.6 Integrating PECoRE in Inseq

To facilitate the use of PECORE in future research, a flexible implementation of the
framework was incorporated into the Inseq toolkit presented in Chapter 3. Since its
v0.6.0 Inseq offers the CLI command attribute-context , supporting all contrastive
step functions and attribution methods in the library, and compatible with any decoder-
only and encoder-decoder generative language model. Figure 4.5 provides an example
employing the Inseq API to attribute a language model answer to input context para-
graphs, similarly to the retrieval-augmented generation task we discuss in Chapter 5.% In

8The interface is available at: https://huggingface.co/spaces/gsarti/pecore.


https://github.com/inseq-team/inseq/releases/tag/v0.6.0
https://huggingface.co/spaces/gsarti/pecore

80 4. Quantifying Context Usage in Neural Machine Translation

Input Context

[} @ Hawaii consists of 137 volcanic islands that comprise almost the entire Hawaiian B
archipelago. The eight main islands, from northwest to southeast, are Nifihal 2), Kaua'i, 0'ahu,
Moloka'i, Lana'i, Kahoolawe, Maui, and Hawai'i, after which the state is named.

2] @D Of the 50 U.S. states, Hawaii is the eighth-smallest in land area and the 11th-least
populous, but with 1.4 million residents, it ranks 13th in population density. Two-thirds of Hawaii
residents live on O'ahu, home to the state's capital and largest city, Honolulu.

[3]: Historically dominated by a plantation economy, Hawaii remains a major agricultural exporter
due to its fertile soil and uniquely tropical climate in the U.S. its economy has gradually diversified
since the mid-20th century, with tourism and military defense becoming the two largest sectors; @/

Query

[What is the Hawaii Island hosting most of the state residents? ]

Generated Answer (Contextual)

Based on the information provided, @ the Hawaii island is hosting the majority of the state
residents. Two-thirds of Hawaii residents live on O'ahu, which is the largest and most populous
island in the state. The other three islands (Nif @ihau, Kaua'i, and Lana'i) together make up the
remaining 23% of Hawaii's population.

Generated Answer (No Context)

The island in the Hawaii archipelago that hosts most of the state residents is the island of
O'ahu is the largest and most populous island in the Hawaiian Islands, [...] Other major islands in
the state include Maui, Kauai, and the Big Island (also known as Hawaii Island).

Figure 4.5 | Example of context attribution for open-book QA using the Inseq-powered
PECoRe demo. Context-sensitive tokens and contextual cues are highlighted.

the example, the StableLM 2 Zephyr 1.6B language model® is prompted with contexts
retrieved from Wikipedia to provide a long-form answer to a query about population
in the Hawaiian islands. When referring to “the information provided” in @, PECoRe
identifies the indices of the two documents containing relevant information as salient.
The name of Ni‘ihau, a small island with barely any population, is also found important
when the model produces an additional remark on their population in @. However,
we observe that the answer in the context is not identified as salient by PECoRE dur-
ing generation, suggesting that the model might be relying on memorization. We
test the hypothesis by prompting the model in a closed-book setting without context
paragraphs, finding that the model can indeed respond correctly without context.
Moreover, as expected, the island of Ni'thau is never mentioned in the contextless
response. Additional examples of PECoRE usage for other generation tasks are provided
in Section A.2.3.

9 stabilityai/stablelm-2-zephyr-1_6b


https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
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4.7 Conclusion

We introduced PECORE, a novel interpretability framework for detecting and attribut-
ing context usage in language models’ generations. PECoRE extends the standard
plausibility evaluation procedure adopted in interpretability research by proposing a
two-step procedure to identify context-sensitive generated tokens and match them to
contextual cues contributing to their prediction. We applied PECORE to context-aware
MT, finding that context-sensitive tokens and their disambiguating rationales can be
detected consistently and with reasonable accuracy across several datasets, models and
discourse phenomena. Moreover, an end-to-end application of our framework without
human annotations revealed incorrect context usage, leading to problematic MT model
outputs.

While our evaluation is mainly focused on the machine translation domain, thanks to
its generality and its integration in the Inseq framework PECORE can easily be applied
to other context-dependent language generation tasks such as question answering and
summarization, as also demonstrated in the previous section. Future applications of our
methodology could investigate the usage of in-context demonstrations and chain-of-
thought reasoning in large language models (Brown et al., 2020; Wi et al., 2022), and
explore PECORE usage for different model architectures and input modalities. In the
next chapter, we extend PECORE for attributing context usage in retrieval-augmented
generation tasks, where the model is expected to rely on external knowledge sources to
produce answers to user queries.






CHAPTER 5

Answer Attribution for Trustworthy
Retrieval-Augmented Generation

Chapter Summary

This chapter extends our investigation of context usage to modern pre-trained
decoder-only language models for the popular task of retrieval-augmented gen-
eration. We propose MIRAGE, an extension of PECoRe using context saliency to
address trustworthiness challenges in answer attribution for RAG applications.
We evaluate our proposed approach on a multilingual extractive QA dataset, find-
ing high agreement with human-annotated answer attributions. On open-ended
QA, Mirace achieves citation quality and efficiency comparable to self-citation
prompting, while also allowing for a finer-grained control of attribution parame-
ters. Our qualitative evaluation highlights the faithfulness of Mirack attributions
and underscores the promising application of model internals for trustworthy
answer generation with language models.

This chapter is adapted from the paper Model Internals-based Answer Attribution
for Trustworthy Retrieval-Augmented Generation (Qi, Sarti, et al., 2024).

“What makes the desert beautiful ” said the little prince, “is that it hides a well

somewhere...”
— Antoine de Saint-Exupéry, Le petit prince (1943)
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5.1 Introduction

Retrieval-augmented generation with large language models has become the de facto
standard methodology for question answering in both academic (Lewis et al., 2020;
Izacard et al., 2023) and industrial settings (Dao and Le, 2023; Ma et al., 2024). This
approach is effective in mitigating hallucinations and producing factually accurate
answers (Petroni et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022; Ren et al., 2025).
However, verifying whether the model answer is faithfully supported by the retrieved
sources is often non-trivial due to the large context size and the variety of potentially
correct answers (Krishna et al., 2021; Xu et al., 2023a).

In light of this issue, several answer atiribution' approaches were recently proposed to
ensure the trustworthiness of RAG outputs (Rashkin et al., 2023; Bohnet et al., 2022;
Muller et al., 2023). Initial efforts in this area employed models trained on Natural
Language Inference (NLI) to automate the identification of supporting documents
(Bohnet et al., 2022; Yue et al., 2023). However, being based on an external validator,
this approach does not faithfully explain the answer generation process but simply
identifies plausible sources supporting model answers in a post-hoc fashion. Following
recent progress in the instruction-following abilities of LLMs, self-citation (i.e. prompting
LLMs to generate inline citations alongside their answers) has been proposed to mitigate
the training and inference costs of external validator modules (Gao et al., 2023a).
However, self-citation performance is hindered by the imperfect instruction-following
capacity of modern LLMs (Mu et al., 2023; Liu et al., 2023a), and resulting attributions
are still predicted in an unintelligible, post-hoc fashion. This is an important limitation
for these approaches, since the primary goal of answer attribution should be to ensure
that the LLM is not ‘right for the wrong reasons’ (McCoy et al., 2019).

In light of these considerations, we introduce MIRAGE, an extension of the context-
reliance evaluation PECORE framework from the previous chapter for efficient and
faithful answer attributions. Mirace first identifies context-sensitive tokens in a gen-
erated sentence by measuring the shift in LM predictive distribution caused by the
added input context. Then, it attributes this shift to specific influential tokens in the
context using gradient-based saliency or other input attribution techniques (Madsen
et al., 2022a). Finally, attributions can be aggregated at the document level to match
context-dependent generated sentences with retrieved documents that contribute to
their prediction. The resulting pairs can then be converted to citations using the standard

'We use the term answer attribution (AA) when referring to the task of citing relevant sources to
distinguish it from the input attribution methods used in MIraGE.
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¢ LLM Prompt

(4 Attributed Answer

“\ Instructions: Write an accurate, engaging, and concise
answer for the given question using only the provided results [...]

? Q: Why are Macs so immune to viruses, compared to PCs?

* Doc [1]

[...] there are
so few of them
around compared
to PCs|[...]

* Doc [2]

There are millions
more PCs out
there, so hackers
focus on those [...]

* Doc [3]

[...] Apple removes
its virus immunity
claim for Mac from
official website [...]
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@ Answer: While it's true that Macs have historically had fewer
viruses, this is largely due to the smaller market(!) share of Mac
devices compared to PCs(®). However, this doesn't mean that
Macs are completely immune. Apple has also removed its virus
immunity claim® for Macs from its official website [...]
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more PCs out
there, so hackers
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Figure 5.1 | MIRAGE is a model internals-based framework for answer attribution in
RAG settings. Context-sensitive answer spans (in color) are detected and matched with
contextual cues in retrieved sources to evaluate the trustworthiness of models’ answers.

answer attribution (AA) format.

We begin our assessment of MIraGE on the short-form XOR-AttriQA dataset (Muller
et al., 2023), showing high agreement between Mirage results and human annotations
across several languages. We then test our method on the open-ended ELI5 dataset
(Fan et al., 2019), achieving AA quality comparable to or better than self-citation while
ensuring a higher degree of control over attribution parameters. In summary, we make

the following contributions:>

* We introduce MIRAGE, 2 model internals-based answer attribution framework

2Code and data released at https: //github.com/Betswish/MIRAGE. A demo for MiraGE using the
Inseq attribute-context APIisavailable at https://hf.co/spaces/gsarti/mirage.


https://github.com/Betswish/MIRAGE
https://hf.co/spaces/gsarti/mirage
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optimized for RAG applications.

* We quantify the plausibility of Mirace attributions on two datasets, showing
improvements over NLI and self-citation methods while ensuring better con-

trollability and efficiency.

* We analyze challenging attribution settings, highlighting Mirace's faithfulness
to LLMSs’ reasoning process.

5.2 Background and Related Work

In RAG settings, a set of documents relevant to a user query is retrieved from an
external dataset and infilled into an LLM prompt to improve the generation process
(Petroni et al., 2020; Lewis et al., 2020). Answer attribution (Rashkin et al., 2023; Bohnet
et al., 2022; Muller et al., 2023) aims to identify which retrieved documents support
the generated answer (answer faithfulness, Gao et al., 2023b), e.g., by exploiting the
similarity between model outputs and references.® Simplifying access to relevant sources
via answer attribution is a fundamental step towards ensuring RAG trustworthiness in
customer-facing scenarios (Liu et al., 2023a).

5.2.1 Answer Attribution Methods

Entailment-based Answer Attribution Bohnet et al. (2022) and Muller et al.
(2023) propose to approximate human AA annotations with NLI systems such as TRUE
(Honovich et al., 2022), using a source document as premise and an LLM-generated
sentence as entailment hypothesis. AAs produced by these systems were shown to
correlate strongly with human annotations, prompting their adoption in AA studies
(Muller et al., 2023; Gao et al., 2023a). Despite their effectiveness, entailment-based
methods can be computationally expensive when several answer sentence-document
pairs are present. Moreover, this setup assumes the NLI model’s ability to robustly detect
entailment relations across all domains and languages for which the LLM generator
is used. In practice, however, NLI systems were shown to be brittle in challenging
scenarios, exploiting shallow heuristics (McCoy et al., 2019; Nie et al., 2020; Sinha
et al., 2021; Luo et al., 2022), and require dedicated efforts for less-resourced settings
(Conneau et al., 2018). For example, NLI may fail to correctly attribute answers in
multi-hop QA settings when considering individual documents as premises (Yang et al.,
2018; Welbl et al., 2018).

3Popular frameworks such as LangChain and LlamaIndex support similaricy-based citations
using vector databases.


https://www.langchain.com/
https://www.llamaindex.ai/
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Figure 5.2 | Instruction-following errors in self-
citation, using the setup of Gao et al. (2023a).
Self-citation  (Gao et al., 2023a) is a recent AA approach exploiting the ability of
recent LLMs to follow instructions in natural language (Raffel et al., 2020; Chung
et al.,, 2024; Sanh et al., 2022; OpenAl, 2023), thereby avoiding the need for an external
validator. Nakano et al. (2021) and Menick et al. (2022) propose citation fine-tuning
for LLMs, while Gao et al. (2023a) instruct general-purpose LLMs to produce inline
citations in a few-shot setting. Self-citation answers are generally more relevant to the
provided sources’ contents, but can still contain unsupported statements and inaccurate
citations (Liu et al., 2023a). In our preliminary analysis, we find that self-citation often
misses relevant citations, uses wrong formats, or refers to non-existing documents
(Figure 5.2). For the ELI5 dataset (Fan et al., 2019), we find that LLaMA 2 7B Chat
(Touvron et al., 2023) and Zephyr 3 7B (Tunstall et al., 2024) fail to produce AAs
matching the prompt instructions for the majority of generated sentences, with almost
all answers having at least one unattributed sentence when the Gao et al. (2023a)
self-citation setup is used (Table 5.1).
Answer Attribution can be Unfaithful The aforementioned approaches do not
account for attributions’ faithfulness, i.e. whether the selected documents influence the
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LLM during the generation. Indeed, the presence of an entailment relation or high
semantic similarity does not imply that the retrieved document influenced the answer
generation process. This can be true in cases where LLMs may rely on memorized
knowledge while ignoring relevant, albeit unnecessary, contextual information.

Even in the case of self-citation, recent work showed that, while the justifications of
self-explaining LLMs appear plausible, they generally do not align with their internal
reasoning process (Atanasova et al., 2023; Madsen et al., 2024; Agarwal et al., 2024;
Randl et al., 2025), with little to no predictive eficacy (Huang et al., 2023). By contrast,
approaches based on model internals are designed to faithfully reflect input importance
in motivating model predictions. For instance, Alghisi et al. (2024) explores the use of
gradient-based attribution to locate salient history segments for various dialogical tasks.

Concurrent to our work, Phukan et al. (2024) and Cohen-Wang et al. (2024) have
proposed other internals-based methods for granular AA of LLM generations. While
the two-step approaches proposed in both works are similar to MiraGe, they also differ
in substantial ways. Notably, Phukan et al. (2024) derive attributions from embedding
similarity, which does not capture the functional influence of context usage during the
generation process. ContextCite (Cohen-Wang et al., 2024) instead fits a linear surrogate
model to estimate the impact of ablating context segments on downstream answer
probabilities. While this procedure approximates causal context influence, it still requires
a sufficiently large context and many LLM forward passes to learn the surrogate model”,
ultimately providing a coarser attribution for the full generated output. On the contrary,
Mirace efficiently estimates generated tokens requiring attribution via contrastive
metrics to produce granular attributions at the token level, limiting computations to
estimate how context impacts LLM predictions. A maximally faithful AA approach
would ablate all possible combinations of context elements to counterfactually estimate
their importance in relation to model predictions. Given the long-form answers and
contexts in RAG settings, this is practically unfeasible. Even if based on approximations,
internals-based approaches such as MiraGe are intrinsically more faithful than external
validators like NLI models, since they aim to exploit information functional to the
predictive process rather than relying solely on the generated output.

5.3 Method

Identifying which generated spans were most influenced by preceding information
is a key challenge for LM attribution. The Model Internals-based RAG Explanations

*Authors suggest a minimum of 32 different ablations.
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Figure 5.3 | llustration of MiraGE’s two-step approach adapted from PECORE for
RAG answer attribution. Step 1: CTI detects context-sensitive tokens in the generation
(e.g. smaller). Step 2: CCI attributes the generation of detected tokens back to context
tokens (e.g. few in Doc[1] promotes the generation of smaller instead of PC) using
contrastive input attribution. Token pairs are then aggregated into sentence-document
citations for practical usage.

(Mirace) method we propose is an extension of the Plausibility Evaluation for Con-
text Reliance (PECoRE) framework (Sarti et al., 2024c) for context-aware machine
translation. Importantly, this framework requires open-weights access to the LLM
generator, which is a strict but necessary requirement to provide an accurate overview
of the actual context usage during generation (Casper et al., 2024). This section frames
the PECoRE’s two-step procedure in the context of RAG, as illustrated in Figure 5.3,
and clarifies how MIraGe adapts it for RAG answer attribution.

Step 1: Context-sensitive Token Identification (CTI)  For every token in an
answer sentence y = (Y1, ..., Y,) generated by an LM prompted with a query q and a
context ¢ = (c1,. . ., C|c|), a contrastive metric mn such as KL divergence (Kullback and
Leibler, 1951) is used to quantify the shift in the LM predictive distribution at the i-th
generation step when the context is present or absent (P, or P}, _..). Resulting scores
m = (myq,...,my) reflect the context sensitivity of every generated token and can be

converted into binary labels using a selector function sg:

CTl(q,c,y) = {yi|sci (m;) = 1Vy; € y}
with m; = DKL(PcitX”Péo—ctx)

Step 2: Contextual Cues Imputation (CCI)  For every context-sensitive token y;
\

identified by CTI, a contrastive alternative y," is produced by excluding c from the
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prompt, but using the original generated prefix y;. Then, contrastive input attribution
(Yin and Neubig, 2022) is used to obtain attribution scores a’ = (ai, ..., a‘i o) for every
context token ¢; € c:

a’ = {V; (p(y:) — p(;°) ), ¥e; €}

where V is the L2 norm of the gradient vector over the input embedding of context to-
ken ¢;, and both probabilities are computed from the same contextual inputs (q, ¢, y<;).
Intuitively, this procedure identifies which tokens in ¢ influence the increment of the

probability for token y; and the decrement of that for the non-contextual option 4., as
shown in Step 2 in Figure 5.3. Resulting scores are once again binarized with a selector

Sccr-

CCl(yi) = { ¢ | seei (af) = 1, Ve; € ¢}

This results in pairs of context-sensitive generated tokens and the respective input-
context tokens influencing their prediction:

P = {(yi,cj >, Yy; € CTI,VCJ' € CCI(yl)}

5.3.1 From Granular Attributions to Document-level Citations

CTI Filtering  To obtain discrete labels from the CTI step, we set sci(m;) = m; >
m*, where m* is a threshold value for selecting context-sensitive generated tokens.
We experiment with two variants of m*: a calibrated threshold m? | obtained by
maximizing agreement between the contrastive metric and human annotations on a
calibration set with human AA annotations, and an example-level threshold m},
using only within-example scores to avoid the need for calibration data. Following Sarti
et al. (2024c), we set m?, = M + 0y, where m and oy, are the average and standard

deviation of m scores for generated tokens.

CCI Filtering  To extract granular document citations (i.e., colored spans with
; > a™, where a'* is either the
Top-K or Top-% highest attribution value in a’, to filter attributed context tokens

¢; € CCI(y;). Then, we use the identifier docid(c;) of the documents they belong to as

document indices in Figure 5.1), we set s¢i = a

citation indices for context-sensitive token y;. Highlights for consecutive tokens citing
the same documents are collated into a single span and mapped from subword to word
level to facilitate interpretation.
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Sentence-level Aggregation  Following standard sentence-level AA practices, we
aggregate token-level citations as the union over all cited documents docid(-) across
context-sensitive tokens in y:

Mirage(y) = U docid(c;) Ve; € CCI(y;)
¥ €CTI(y)

with seg = m; > m*, s = aj > a

In the following sections, we use MIRAGE, and MIRAGE. to refer to sentence-level
answer attribution using m* | and m?, thresholds, respectively.
cal ex

5.4 Agreement with Human Answer Attribution Annotations

We begin our evaluation by comparing Mirace predictions to human-produced answer
attributions. Importantly, our aim is not to compare several AA approaches to claim
optimal faithfulness, but rather to evaluate how our proposed framework fares against
existing approaches at the task of producing answer attributions from model internals.
We employ the XOR-AttriQA dataset (Muller et al., 2023), which, to our knowledge,
is the only open dataset with human annotations over RAG outputs produced by a
publicly accessible LM.°

We limit our assessment to open-weights LLMs to ensure that MiraGE answer attribution
can faithfully reflect the model’s inner processing towards the natural production of
the annotated answer used for evaluation. While these answers could be force-decoded
from an open-source model to enable miraGE usage, such a procedure would likely
impact the validity of AA, as the selected model would not naturally generate the forced
answers. Moreover, while cross-linguality is not the focus of our work, XOR-AttriQA
allows us to assess the robustness of MIRAGE across several languages and its agreement
with human annotations compared to an entailment-based system.

5.4.1 Experimental Setup

XOR-AttriQA consists of 500/4720 validation/test tuples, each containing a concise
factual query q, a set of retrieved documents that we use as context ¢ = (docy, ..., docy),
and a single-sentence answer y produced by an mT5-base model (Xue et al., 2021)
fine-tuned on cross-lingual QA in a RAG setup (CORA; Asai et al. (2021)). Queries

5E.g., the human-annotated answers in Bohnet et al. (2022) were generated by PALM 540B (Anil
et al., 2023), whose internals are inaccessible. See Section A.3.1 for a comparison.
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Dataset | BN FI JA RU TE | Total

Orig. | 1407 659 1066 954 0634 | 4720
Match | 274 214 232 254 170 | 1144

Table 5.2 | Statistic for test sets of the original XOR-AttriQA and XOR-AttriQA ,,.cp,-

and documents span five languages —Bengali (BN), Finnish (FI), Japanese (JA), Russian
(RU), and Telugu (TE)—and cross-lingual retrieval is allowed.

Although the RAG generator employs a set of retrieved documents during genera-
tion, human annotators were asked to label tuples (q, doc;, y) to indicate whether the
information in doc; supports the generation of y.

Notably, MiraGE requires extracting model internals in the naturalistic setting that leads
to the generation of the desired answer, i.e., the one assessed by human annotators.
Hence, we perform a selection procedure to identify XOR-AttriQA examples where
the answer produced by filling in the concatenated documents ¢ in the LM prompt
matches the one provided. The resulting subset, which we dub XOR-AttriQA . cch»
contains 142/1144 calibration/test examples and is used for our evaluation. Replicating
the original answer generation process is challenging since the original ordering of
the documents doc; in c is unavailable.® To maximize the chances of replication, we
attempt to restore the original document sequence by randomly shuffling the order of
doc;s until LLM can naturally predict the answer y. The procedure adopted is described
in Algorithm 2. The statistics of the original XOR-AttriQA and XOR-AttriQA ch
are shown in Table 5.2.

5.4.2 Entailment-based Baselines

Muller et al. (2023) use an mT5 XXL model fine-tuned on NLI for performing answer
attribution on XOR-AttriQA. Since neither the tuned model nor the tuning data are
released, we opt to use TRUE (Honovich et al., 2022), a fine-tuned T5 11B model
(Raffel et al., 2020), which was shown to highly overlap with human annotation on
English answer attribution tasks (Muller et al., 2023; Gao et al., 2023a). We evaluate
TRUE agreement with human annotation in two setups. In NLIyg, we evaluate
the model directly on all examples, including non-English data. While this leads the
English-centric TRUE model out of distribution, it accounts for real-world scenarios
with noisy data, and can be used to assess the robustness of the method in less-resourced
settings. Instead, in NLIy,, all queries and documents are machine translated to English

®Muller et al. (2023) only provide the split documents without the original ordering.
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Algorithm 2 Restore document sequence producing the original annotated answer in
XOR-AttriQA
Require: {Docy, ..., Docy,}, query, answer, M

1: procedure REsSTORESEQUENCE({ Docy, ..., Docy, }, query, answer, M)

2: iter =0, found = False

3: while iter < 200 do

4: pred = M({Docy, ..., Doc,, }, query)
5: if pred == answer then

6: found = True, break

7: else

8: Shuffle({ Docy, ..., Doc,, })
9: end if

10: iter += 1
11: end while
12: if found then

13: return {Docy, ..., Docy }
14: end if

15: end procedure

using the Google Translate API. While this simplifies the task by ensuring all TRUE
inputs are in English, it can lead to information loss due to imprecise translation.

5.4.3 Results and Analysis

Mirage agrees with human answer attribution = Table 5.3 presents our results.
Mirage is found to largely agree with human annotations on XOR-AttriQA,.h, With
scores on par or slightly better than those of the ad-hoc NLI,,,; system augmented with
automatic translation. Although calibration appears to generally improve MIrAGE’s
agreement with human annotators, we note that the uncalibrated MiraGE.y achieves
strong performances despite having no access to external modules or tuning data.
These findings confirm that the inner workings of LMs can be used to perform answer
attribution, yielding performances on par with supervised answer attribution approaches
even in the absence of annotations for calibration.

Mirage is robust across languages and filtering procedures  Table 5.3 shows that
NLIig answer attribution performances are largely language-dependent due to the
unbalanced multilingual abilities of the TRUE NLI model. This highlights the brittleness
of entailment-based approaches in OOD settings, as discussed in Section 5.2.1. Instead,
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Method |  ExtraReq. |CCIFilter| BN FI JA RU TE |Avg. / Std
NLI oxi6 11B NLI model ~ 33.8 83.7 86.5 85.8 50.0]68.0 / 21.9
NLI,; | 11B NLI model + MT 82.6 83.7 90.5 81.7 82.5| 84.2 / 3.2

Top 3 81.7 84.2 87.8 83.3 87.0| 84.8 / 2.3

AR e 12 AR ex Top 5% |84.4 83.0 91.4 85.8 88.9| 86.7 / 3.1
MIRAGE _ Top3 [80.2 785 83.8 77.2 75.2| 79.0 / 2.9
- Top5% |81.7 80.1 89.2 84.4 81.8| 83.4 / 3.2

Table 5.3 | Agreement % of Mirack and entailment-based baselines with human AA
on XOR-AttriQA ., using CORA for RAG. Extra Req.: data/models needed for AA
in addition to the RAG model and the current example. Filter: s filtering for saliency
scores. Best overall and best uncalibrated scores are highlighted.

Mirage variants perform similarly across all languages by exploiting the internals of the
multilingual RAG model. Mirace’s performance across languages is comparable to that
of NLIy,., which requires an extra translation step to operate on English inputs.

We further validate the robustness of the CCI filtering process by testing percentile
values between Top 3-100% for the MIRAGE, setting. Figure 5.4 shows that Top %
values between 3 and 20% lead to a comparably high agreement with human annotation,
suggesting this filtering threshold can be selected without ad-hoc parameter tuning.

Agreement (%)
80
— AVG
60 BN
FI
40+ "
200 %

3 5 10 20 40 60 80 100
Range Top (%)
Figure 5.4 | Robustness of MIRAGE. agreement with human annotations across Top-%
CCI filtering thresholds.

5.5 Answer Attribution for Long-form QA

XOR-AttriQA can only provide limited insights for real-world answer attribution
evaluation, as its examples are sourced from Wikipedia articles and its answers are
very concise. In this section, we extend our evaluation to ELI5 (Fan et al., 2019), a
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challenging long-form QA dataset that was recently employed to evaluate LLM self-
citation capabilities (Gao et al., 2023a). Different from XOR-AttriQA, ELI5 answers are
expected to contain multiple sentences of variable length, making it especially fitting
to assess MIRAGE context-sensitive token identification capabilities before document
attribution. Alongside our quantitative assessment of MIRAGE in relation to self-citation
baselines, we conduct a qualitative evaluation of the disagreement between the two
methods.

5.5.1 Experimental Setup

Dataset  The ELI5 dataset contains open-ended why/how/what queries g from the
“Explain Like I'm Five” subreddit eliciting long-form multi-sentence answers. For our
evaluation, we use the RAG-adapted ELI5 version by Gao et al. (2023a), containing
top-5 matching documents ¢ = (docy, . .., docs) retrieved from a filtered version of the
Common Crawl (Sphere; Piktus et al. (2021)) for every query. The answer attribution
task is performed by generating a multi-sentence answer ans = (y1,...,y) with an
LLM using (q, ¢) as inputs, and identifying documents in ¢ supporting the generation
of answer sentence y;, Vy; € ans.

Models and Answer Attribution Procedure ~ We select LLaMA 2 7B Chat (Touvron
et al., 2023) and Zephyr 3 7B (Tunstall et al., 2024) for our experiments since they
are high-quality open-source LLMs of manageable size. To enable a fair comparison
between the tested attribution methods, we first generate answers with inline citations
using the self-citation prompt by Gao et al. (2023b). Then, we remove citation tags
and use MIRAGE to attribute the resulting answers to retrieved documents. This process
ensures that citation quality is compared over the same set of answers, controlling for
the variability that a different prompt could produce. For more robust results, we
perform generation three times using different sampling seeds, and report the averaged
scores. Since human-annotated data is not available, we only assess the calibration-free
MIRAGE.y.

Entailment-based Evaluation Differently from the XOR-AttriQA dataset used
in Section 5.4, ELI5 does not contain human annotations of AA. For this reason, and
to ensure consistency with Gao et al. (2023a) self-citation assessment, we adopt the
TRUE model as a high-quality approximation of expected annotation behavior. De-
spite the potential OOD issues of entailment-based AA highlighted in Section 5.4, we
expect TRUE to perform well on ELI5 since it closely matches the general/scientific
knowledge queries in TRUE’s fine-tuning corpora and contains only English sentences.
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. Citation T
Model Answer Attrib. Prec. Rec. Fi
Self-citation 414 243 30.6

Zephyr,@ Mirageex Top 3 38.3 46.2 419
Miragex Top 5%  44.7 46.5 45.6

Self-citation 37.9 198 26.0
LLaMA 2 Mirageex Top 3 21.8 29.6 25.1
Mirageex Top 5% 262 29.1  27.6

Table 5.4 | Answer attribution quality estimated by TRUE for self-citation and MIRAGE
on ELI5.

To overcome the multi-hop issue when using single documents for entailment-based
answer attribution, we follow the ALCE evaluation (Gao et al., 2023a) to measure
citation quality as NLI precision and recall (summarized by F1 scores) over the con-
catenation of retrieved documents. The ALCE framework for RAG QA evaluation
assesses the LLMSs’ responses from three viewpoints: citation quality, correctness, and
fluency. Citation quality evaluates the answer attribution performance with recall and
precision scores. The recall score calculates if the concatenation of the cited documents
entails the generated sentence. The precision measures whether each document is cited
precisely by verifying if the concatenated text still entails the generation whenever one
of the documents is removed. We further calculate F1 scores to summarize the overall
performance.

5.5.2 Results

Results in Table 5.4 show that MiraGE provides a significant boost in answer attribution
precision and recall for the Zephyr 8 model. At the same time, it greatly improves
citation recall at the expense of precision for LLaMA 2, resulting in an overall higher F1
score for the MiraGeex Top 5% setting. These results confirm that MiraGE can produce
effective answer attributions in longer and more complex settings while employing no
external resources like the self-citation approach.

From the comparison between Top 3 and Top 5% CCI filtering strategies, we note that
the latter generally results in better performance. This intuitively supports the idea that
an adaptive selection strategy is more suitable for accommodating the wide variability
of attribution scores across different examples. Figure 5.5 visualizes the distributions of
attribution scores aé- for an answer produced by Zephyr 3, showing that most context
tokens in retrieved documents receive low attribution scores, with only a handful of
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Generation: Firms like Snapchat, Uber, and Xiaomi, valued at $19 billion [...]
Contextual-sensitive token: 9

Doc 1: [...] $16 billion to $h9 billion, making it the third most highly valued tech [...]

CCl Scores 38 3 Min: 0. 2‘ Range Top (#Tokens)
40
// 5%
3B/ (1)
30— 20%
@
25
20| : 50%
. : (6)
151 <«
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10, %+ o
% ;- vy 3 .
51 %y, “.’;’j > 8 '.
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0 co MM%«» J-N"h‘ MW 100%
849
Doc1 Doc2 Doc3 Doc4 Doc5 (849)

Contextual tokens

Figure 5.5 | Attribution scores over retrieved documents’ tokens for the prediction of
context-sensitive token ‘9’.

them contributing to the prediction of the context-sensitive token ‘9’ in the generation.
This example also provides an intuitive explanation of the robustness of Top-% selection
thresholds discussed in Section 5.4.3. Ultimately, the Top 5% threshold is sufficient to
select the document containing the direct mention of the generated token.

Since the my, threshold used to select context-sensitive tokens by MIRAGEe, depends on
the mean and standard deviation of generated answer’s scores, we expect that the length
of the generated answer might play a role in citation quality. As shown in Figure 5.6,
Mirage citation quality is indeed lower for shorter answer sentences. However, a similar
trend is observed for self-citation, which is outperformed by Mirage for all but the
shortest length bin (< 10 tokens). The proportion of non-attributed sentences (red line)
suggests that the lower quality could be a byproduct of the ALCE evaluation protocol,
where non-attributed sentences receive zero precision/recall. Future availability of
human-annotated RAG datasets may shed more light on this effect.

5.5.3 Qualitative Analysis of Disagreements

To better understand MiraGe’s performance, we examine some ELI5 examples where
Mirage disagrees with self-citation on Zephyr 3’s generations. Table 5.5 and Table 5.6
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Figure 5.6 | MIRAGE. (top) and self-citation (bottom) average performance on ELI5
answer sentences binned by length. Red: Percentage of sentences with > 1 citations.

illustrate two cases in which the entailment-based TRUE model results agree with
either MIRAGE or self-citation.

In Table 5.5, the answer provided by the model is directly supported by Document [1],
as also identified by TRUE. However, self-citation fails to cite the related document at
the end of the two sentences. By contrast, MIRAGE attributes several spans to Document
[1], resulting in the correct answer attribution for both sentences.

While TRUE achieves high consistency with human judgment (e.g., for the example
in Table 5.5), NLI-based AA can still prove unreliable in cases of high lexical overlap
between the answer and supporting documents. Table 5.6 illustrates one such case,
where both self-citation and TRUE attribute the answer to Document [3], whereas
Mirage does not label any context document as salient for the answer. Here, the answer
wrongly states that the bar code can be used to prevent the alarm, while Document [3]
mentions that the code can be used to cancel the alarm after an accidental activation.
Thus, despite the high lexical and semantic relatedness, the answer is not supported
by Document [3]. The failure of TRUE in this setting highlights the sensitivity of
entailment-based systems to surface-level similarity, making them brittle in cases where
the model’s context usage is not straightforward. Using another sampling seed for the
same query produces the answer “[...] the individual can cancel the alarm by providing
their password at the keypad”, which MiraGE correctly attributes to Document [3].
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INPUT: PROMPT + RETRIEVED DOCs (N=5) + QUERY

Document [1] [...] Q. What does it mean for books to be Sensitized or Desensitized? A security
strip is embedded into each library book. When a book is checked out, it must be "desensitized"
so that it will not set off the alarm when it leaves or enters the library. When the book is returned,
it is "sensitized" so that the alarm will be set off should someone attempt to take the book from the
library without going through the proper borrowing procedure.

Document [2] [...]

Query: How does a small paper library bar code set off the security alarm when you haven’t
checked a book out?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] When a book is checked out, it is "desensitized" to prevent the alarm from
going off. [@] When the book is returned, it is "sensitized" so the alarm will sound if the item is
taken without authorization. [&] [...]

Mirage: [...] When a book is checked (*) out, it (*) is "desensitized" (*) to prevent the alarm
from going off. [1] When the book () is returned, it is "sensitized" (*) so the alarm will sound
if the item is taken without authorization. [1] [...]

NLI (True model): [1] entails both answer sentences.

Table 5.5 | Example of self-citation failure using Zephyr 3 on ELI5. NLI and Mirace
produce the correct citation, while self-citation does not cite any document ([&]).

InpuUT: PROMPT + RETRIEVED DOCs (N=5) + QUERY

Document [2] [...]

Document [3] [...] What will happen if you accidentally set off your security system? The siren
will sound and it will be loud, but you should be able to stop the siren by entering your code into
your keypad. [...]

Document [4] [...]

Query: How does a small paper library bar code set off the security alarm when you haven’t
checked a book out?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] False alarms can be prevented by entering the code on the keypad, as docu-

mented in [3]. [...]
Mirage: [...] False alarms can be prevented by entering the code on the keypad [&] [...]

NLI (True model): [3] entails the answer sentence.

Table 5.6 | Example showcasing the brittleness of entailment-based AA. MirRaGE cor-
rectly finds that the answer cannot be attributed ([@]), while NLI and self-citation
attribute the lexically similar Document [3].
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5.6 Limitations

We now highlight some limitations of the Mirace method and our experimental
evaluation, which should be addressed in future work.

LLMs Optimized for Self-citation ~ Our analysis focuses specifically on models
that are not explicitly trained to perform self-citation and can provide citations only
when prompted to do so. While recent systems incorporate self-citation into their
optimization scheme for RAG applications, incorporating model internals into the
attribution process will remain a valuable and inexpensive method to ensure faithful
answer attributions.

Brittleness of NLI-based Evaluation  Following Gao et al. (2023a), the evaluation
of Section 5.5 employs the NLI-based system TRUE due to the lack of AA-annotated
answers produced by open-source LLMs. However, using the predictions of NLI
models as AA references is far from ideal, given their brittleness in challenging scenarios
and their tendency to exploit shallow heuristics. While the ELI5 dataset is reasonably
in-domain for the TRUE model, this factor might still undermine the reliability of
some of our quantitative evaluation results. Future work should produce a wider variety
of annotated datasets for reproducible answer attribution using open-source LLMs,
enabling us to extend our analysis to a broader set of languages and model sizes and
ultimately enhance the robustness of our findings.

Applicability to Other Domains and Models  Our evaluation is conducted on
relatively homogeneous QA datasets and does not include language models with >7B
parameters. This limits the generalizability of our findings to other domains and larger
models. Future work should extend our analysis to a broader range of domains and
model sizes to further validate the robustness and applicability of Mirage. This said, we
expect MIRAGE to be less vulnerable to language and quality shifts compared to existing
AA methods that depend on external validators or on the model’s instruction-following
abilities.

Scalability on Longer Context  The computational cost for the simple gradient-
based version of MiraGe we propose is 20(F) + |CTI(y)| - O(B), where O(F), O(B)
are respectively the costs of a forward and a backward pass with the LLM, and |CTI(y)|
is the number of tokens selected by the CTI step. While CTI effectively limits the
expensive backward component in the MiraGe computation, its cost is bound to increase
significantly for larger models and context sizes. When applying Mirace to LLMs
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with <10B parameters, we note that its cost can be comparable or lower to supervised
models like TRUE, requiring several forward passes using a large 11B LLM. Importantly,
Mirage is a flexible framework that can be implemented using different input attribution
methods in the CCI step, including lightweight techniques that require only forward
passes, such as Attention Rollout (Abnar and Zuidema, 2020), Value Zeroing (Mohebbi
et al., 2023), or ALTI-Logit (Ferrando et al., 2023). Finally, a promising perspective
for scaling to larger LLMs could be to assess whether Mirace-produced AAs remain
accurate when force-decoding the original model’s answer from a different LLM with
fewer parameters.

Parametrization and Choice of Attribution Method ~ While Section 5.4 high-
lights the robustness of MIrAGE to various CCI filtering thresholds, the method still
requires non-trivial parametrization. In particular, we emphasize that the choice of
the attribution method employed to generate attribution scores in the CCI step can
significantly impact the faithfulness of the resulting answer attributions. Although we
used a relatively simple gradient-based approach, our proposed framework is method-
agnostic. We leave the evaluation of modern input attribution techniques, such as the
ones mentioned in the previous paragraph, to future work to further improve Mirace
applicability in real-world settings.

5.7 Conclusion

In this chapter, we introduced MIRAGE, a novel approach to enhance the faithfulness of
answer attribution in RAG systems. By leveraging model internals, Mirace effectively
addresses the limitations of previous methods based on prompting or external NLI
validators. Our experiments demonstrate that MiraGe produces outputs that strongly
agree with human annotations while being more efficient and controllable than its
counterparts. Our qualitative analysis shows that MiraGe can produce faithful attri-
butions that reflect actual context usage during generation, reducing the risk of false
positives motivated by surface-level similarity. Overall, MirRAGE represents a promising
first step in exploiting interpretability insights to develop faithful answer attribution
methods, paving the way for the usage of LLM-powered question-answering systems
in real-world, user-facing applications.

In the next part of this thesis, we will move beyond analysis-driven methods to study
how prompting (Chapter 6) and interpretability-based methods (Chapter 7) can be
used to effectively condition the machine translation generation process.
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Conditioning Generation for
Personalized Machine Translation
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CHAPTER 6

Retrieval and Marking for
Attribute-Controlled Translation

Chapter Summary

This chapter shifts the focus from understanding models’ context usage to in-
fluencing their generation process. As an initial investigation, we introduce
Retrieval and Attribute-Marking enhanced Prompting (Ramp), a prompting
method that employs semantic similarity retrieval to select in-context examples
and attribute marking to identify relevant information, improving generation
accuracy with large multilingual language models for few-shot and zero-shot
attribute-controlled translation. We experiment on two multilingual datasets for
formality and gender-controlled translation, showing that Ramp improves both
attribute accuracy and translation quality over standard prompting and MT base-
lines. The cross-lingual effectiveness of our approach, using in-context examples
from various languages, demonstrates the potential for scalable personalization
methods when few examples are available.

This chapter is adapted from the paper Ramp: Retrieval and Attribute-Marking
Enhanced Prompting for Atiribute-Controlled Translation (Sarti et al., 2023b).

Like physical events with their causal and teleological interpretations, every lin-
guistic event had two possible interpretations: as a transmission of information and
as the realization of a plan.

— Ted Chiang, Stories of Your Life and Others (2002)
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Formality-Controlled Translation (CoCoA-MT)

Neutral Src (EN) | OK, then please follow me to your table.

Formal Ref (JA) | Tle7—JLETRAIC DL THRTLEE 0.

Informal Ref (JA) ‘ TRIT=TILETHII DN TERT,
Gender-Controlled Translation (MT-GenEval)

Neutral Src (EN) ‘ After retiring from teaching, Cook became a novelist.

Feminine Ref (NL) ‘ Nadat ze stopte met lesgeven, werd Cook schrijfster.

Masculine Ref (NL) ‘ Nadat hij stopte met lesgeven, werd Cook schrijver.

Table 6.1 | Examples of attribute triplets from CoCoA-MT and MT-GenEval. Attribute
markers in the attribute-controlled translations are underlined.

6.1 Introduction

Text style transfer (TST) is a task that aims to control stylistic attributes of an input text
without affecting its semantic content (Jin et al., 2022). Research in TST has focused
mainly on English, thanks to the availability of large monolingual English datasets that
cover stylistic attributes such as formality and simplicity (Rao and Tetreault, 2018; Zhu
et al., 2010). In recent years, however, multilingual and cross-lingual applications of
TST have steadily gained popularity (Briakou et al., 2021; Garcia et al., 2021; Krishna
et al., 2022). A notable instance of cross-lingual TST is attribute-controlled translation
(ACT), in which attribute' conditioning is performed alongside machine translation to
ensure that translations are not only correct but match user-specified preferences, such as
formality/honorifics (Sennrich et al., 2016a; Niu et al., 2017; Michel and Neubig, 2018;
Niu and Carpuat, 2020; Nadejde et al., 2022; Wang et al., 2023c), gender (Rabinovich
et al.,, 2017; Vanmassenhove et al., 2018; Saunders and Byrne, 2020), and length (Lakew
et al., 2019; Schioppa et al., 2021). ACT is crucial for sectors such as customer service
and business communication, where stylistic differences can significantly impact user
perception (e.g., misgendering customers or speaking to them in an inappropriately
informal tone can be perceived as offensive or disconcerting). Table 6.1 shows examples
of ACT for formality and gender attributes.

Most prior work on ACT relies on a supervised adaptation component that conditions
the generative model on the selective attribute. However, few annotated ACT datasets
are available, and they generally cover only a limited set of languages and attributes.

e employ the term attribute rather than style, since not all the attributes addressed here (e.g.,
gender) can be considered styles.
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-
labeled examples

EN: You will always || EN: | wish you welcome || EN:

be welcome here and enjoy your stay.
ES formal: Siempre || IT formal: Le do il IT formal:
serd bienvenido benvenuto e sigoda il Arrivederla,

aqui. \/ soggiorno. \/ amico mio!
LITTTTI [T

] (i (]
0 similarity retrieval k = 2

EN: You’re welcome
FR formal:

input

® source & target o language & attribute e attribute marker

Here is a sentence: {You will always be welcome here.}

Here is its Spanish translation written in a formal style: {Siempre sera bienvenido aqui.}

The translated sentence conveys a formal style by using words such as ‘serd’.

Here is a sentence: {| wish you welcome and enjoy your stay.}

Here is its Italian translation written in a formal style: {Le do il benvenuto e si goda il soggiorno.}
The translated sentence conveys a formal style by using words such as ‘Le’, ‘si goda’.

Here is a sentence: {You're welcome.}
Here is its French translation written in a formal style: { l Cross-Lingual Prompt

output

LrgeLanguage | [

Figure 6.1 | An example of Ramp using 2 in-context examples. Top: A sentence
similarity model embeds the input sentence, and the top-k most similar labeled examples
are retrieved from a pool of training data to build the prompt context. Bottom: Labeled
cross-lingual examples are used to fill in the English prompt template, which is then
provided to the LLM to generate the output.

Thus, enabling few-shot or zero-shot ACT would facilitate applying attribute control
to less-resourced attributes and languages.

As a first step into our investigation of conditioning machine translation generation,
this chapter introduces a new approach for ACT: Retrieval and Attribute-Marking
enhanced Prompting (Ramp). Recent studies have shown that large language models
can perform MT out of the box using the prompting paradigm (Brown et al., 2020; Lin
et al., 2022; Chowdhery et al., 2023). We build on this, prompting LLMs to perform
atiribute-controlled MT through two innovations: (1) retrieval of similar examples and (2)
explicit attribute marking.
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Recent works adopting the prompting paradigm for text style transfer have mainly
focused on the generalization capabilities of large English-centric LMs for zero-shot
style transfer using previously unseen style descriptions (Suzgun et al., 2022; Reif et al.,
2022). However, prior work on other NLP tasks has shown that cross-lingual prompting
of multilingual LLMs can be effective (Zhao and Schiitze, 2021; Zhou et al., 2023;
Huang et al., 2022). As such, we leverage multilingual LLMs and extend their ACT
capabilities cross-lingually to languages not covered by the in-context examples, thus
enabling zero-shot ACT.

6.2 Method

Attribute-Controlled Translation  ACT takes two inputs, a sentence x and a
desired target attribute a € A (with A being the space of attributes), and outputs
a translation y that complies with the specified attribute. It can be formulated as a
function f : (x,a) — y. In our experiments, we use attribute values provided by the
CoCoA-MT formality translation dataset and the MT-GENEvVAL gender translation
dataset, i.e., A = {formal, informal} or {female, male}.?

Prompting  In the prompting paradigm for decoder-only LLMs, inputs are given as
decoding prefixes to the model, usually combined with natural language instructions for
output generation. In style-controlled translation, we formulate the prompt for target
language [ and attribute a using the text “Here is a sentence: {x} Here is its | translation
written in a a style:” to produce the output y.* In the few-shot setting, we provide
a sequence of k labeled in-context examples before the unlabeled input, which can be
formulated as a function f : {(x1,l1,a,¥1);- -, (Xk+1,lks1,0)} = Yii1-

6.2.1 Our Approach: Ramp

Ramp builds on the success of the prompting paradigm on few-shot generation tasks
such as monolingual text style transfer (Reif et al., 2022) and MT (Garcia and Firat,
2022; Agrawal et al., 2023) by creating more informative prompts through similarity
retrieval and attribute marking. See Figure 6.1 for an illustration of Ramp.

Similarity Retrieval  In standard prompting, in-context examples are sampled ran-
domly from the pool of labeled examples D 4. In Ramp, we select examples based on

2See Section 6.4 for ethical considerations.
3We adopt prompt templates similar to the one used by Reif et al. (2022), and we write the prompt
template in English. Complete templates are provided in Section B.1.1.
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their similarity with the input text. We first embed both the input text and the source
texts of D4 using all-MiniLM-L6-v2 (Wang et al., 2020). Then, the top-k most similar
examples are retrieved for the input text based on cosine similarity. These are then
used in a descending order based on their cosine similarity as in-context examples in
the inference prompt. As demonstrated in Figure 6.1, the in-context example “You
will always be welcome here.” has the highest similarity to the test example “You’re
welcome.”, so it is prompted first.

Attribute Marking  In standard prompting, in-context examples are provided with-
out explicit information on why they satisty the prompting objective. Inspired by recent
studies that have shown that decomposition of complex tasks can improve prompting
quality (Nye et al., 2022; Wei et al., 2022), we include for every in-context example
an additional sentence directly after the target sentence that specifies which text spans
convey the desired attribute (e.g., “The translated sentence conveys a formal style by using
words such as ‘Vous’”). In our experiments, we use the gold attribute spans included in
the CoCoA-MT and MT-GenEval datasets. In Section 6.5 we suggest possibilities for
automatically deriving attribute spans when gold training labels are not available.

6.2.2 Cross-Lingual Prompting

The similarity retrieval component of Ramp requires a large pool D4 from which
to find appropriate in-context examples for prompting. Low-resource attributes or
language pairs may have insufficient or no annotated data from which to retrieve such
examples. To mitigate this issue, we introduce cross-lingual prompting, in which the
target side of the in-context examples differs from the desired target language of the
translation task. As demonstrated in Figure 6.1, we investigate whether the system can
leverage examples in one language (e.g., attribute indicators in Spanish) to produce the
same attribute in another (e.g., French). Two main features of our Ramp model allow
us to perform cross-lingual prompting: (1) the use of multilingual LLMs, and (2) the
example retrieval step, which is done on the source language only.

6.3 Experiments

In this section, we describe the datasets, LLMs, and baselines used in our experiments,
as well as the evaluation metrics. We then present the results of Ramp in both same-
language and cross-lingual prompting settings.
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AR Arabic DE German | EN  English
ES Spanish | FR  French HI Hindi
IT Italian JA  Japanese | NL  Dutch

RU  Russian
AR ES FR HI PT | DE IT JA RU NL
CoCoA-MT v v v v v v oV v
MT-GenEval v v v v v v v v v
XGLM v v v v v v v v v
BLOOM v v v v v

Table 6.2 | Top: Language codes used in the Ramp experiments. Bottom: Target
languages in the test sets and languages seen by LLMs in pre-training. We report
results on languages seen by both LLMs.

6.3.1 Datasets

We experiment on two multilingual ACT datasets:

* CoCoA-MT (Nadejde et al., 2022) covers formality-controlled translation in
the conversation domain. Source sentences are underspecified for formality, and
references require formality markings (formal or informal).

* MT-GenEvar (Currey et al., 2022) covers gendered translation in the Wikipedia
domain. We use the contextual subset, in which sentences are gender ambiguous
in the source while the reference requires gender marking. We do not use the
disambiguating sentences; instead, we explicitly control the target gender.

Both datasets have gold annotations for attribute-marked target spans, and both cover
translation from English into multiple diverse target languages. We list their target
languages in Table 6.2.

6.3.2 Large Language Models

We select three massively multilingual decoder-only LLMs for the prompting experi-
ments:

* XGLM (Lin et al., 2022) is a 7.5B-parameter model trained on a balanced corpus
containing 30 languages. It was shown to outperform much larger models such
as GPT-3 on tasks related to machine translation and cross-lingual language
understanding. We select it due to its broad linguistic coverage and its manageable

size.
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Dataset Attribute # Train # Test Acc.
CoCoA-MT Formality 7,600 1,596  0.990
MT-GenEval Gender 4,900 9,854  0.970

Table 6.3 | Dataset statistics. We report # of triplets in the train/test split aggregated
across all languages and the classification accuracy on the test split of the classifiers.

* Broom (BigScience Workshop et al., 2022) is a model available in multiple sizes,
trained on a curated corpus spanning 46 natural languages (and 13 programming
languages). However, many of the test languages are not part of its pre-training
corpus (see Table 6.2). We evaluate two variants of the model (7.1B and 175B
parameters) to assess how it is affected by a massive scaling in model parameters.
The larger variant has a parameter count comparable to that of GPT-3, making
it the largest publicly available multilingual LLM at present.

* GPT-NeoX (Black et al., 2022) is a 20B-parameter model trained on The Pile
(Gao et al.,, 2021), a large English-centric corpus covering a broad range of
domains. While the model was primarily trained on English data and is there-
fore not intended for multilingual usage, it exhibits interesting generalization
performance for many of our target languages.

The selected models span three orders of magnitude in terms of number of parameters
and differ in the languages that they cover (see Table 6.2).

6.3.3 Baseline

Attribute tagging is a standard method for ACT, so we include a baseline following
the approach and configuration used by Nadejde et al. (2022), i.e. an encoder-decoder
transformer MT model (Vaswani et al., 2017) pre-trained on public parallel data and
further finetuned on contrastive training pairs with attribute tags (from either CoCoA-
MT or MT—GENEVAL) such as <formal>, <informal>, <masculine> and <feminine>.
We refer to these models as adapted MT in our evaluation.

6.3.4 Evaluation Metrics

We measure translation quality with BLEU (Papineni et al., 2002) and comeT (Rei
et al., 2020). For attribute accuracy, we use the lexical matching metrics provided with
CoCoA-MT and MT-GenEvar (Lexical-Accuracy) and sentence encoders trained
on contrastive examples (Sentential-Accuracy). For the latter, we train multilingual
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classifiers on top of the mDeBERTa-v3 encoder (He et al., 2023). High-performance
pre-trained classifiers have been shown to produce attribute accuracy estimates closer
to human judgments for style transfer (Lai et al., 2022). Table 6.3 presents the accuracy
of the classification models on the test sets of their respective datasets, averaged across
all languages.

We use the original train/test split provided by the CoCoA-MT dataset. Each split
contains telephony and topical_chat domains. We use the ropical_chat domain in our
experiments. MT-GENEVAL contains a dev and test split, and we use the dev split as
training data for the classification model and prompting experiments.

We finetune MDEBERTA-v3-Bast model* on the contrastive examples in the respective
training sets to obtain the attribute classifiers. We fine-tune the classifier for two epochs
with a batch size of 8, a learning rate of 2e-5, 500 warm-up steps, a max sequence
length of 256, and save checkpoints every 500 steps. We do not do hyperparameter
tuning, and thus, a validation set is not used.

Unlike lexical accuracy, the multilingual attribute classifier does not penalize text
generated in incorrect languages. Thus, in cross—lingual prompting experiments, we
include a step of language detection® so that generated sentences not in the requested
target language are considered incorrect.

6.3.5 Same-Language Prompting

We first evaluate the effectiveness of Ramp for formality- and gender-controlled trans-
lation where the language pair used for in-context examples is the same as the one used
in the prompt candidate (e.g., English—Spanish formality-controlled translation using
English—Spanish in-context examples).

We begin by conducting a preliminary evaluation of 3 LLMs across different ranges
of in-context examples to reduce the number of experimental settings for our main
assessment. We perform formality-controlled translation using CoCoA-MT, and
evaluate LLMs by varying the number of in-context examples (i.e., 4-8-16-32, selected
based on the feasible context length®). Figure 6.2 presents results averaged across all
four languages seen by BLoom during its pre-training.

We observe that Ramp generally outperforms base prompting (i.e., random in-context

4 microsoft/mdeberta-v3-base

Shttps://pypi.org/project/langdetect/

®Broom 175B encountered out-of-memory errors with 32 in-context examples on 8 A100 40GB
GPUs.


https://huggingface.co/microsoft/mdeberta-v3-base
https://pypi.org/project/langdetect/
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Figure 6.2 | BLEU and sentential formality accuracy of prompt outputs on CoCoA-MT
test set for different amounts of in-context examples in the base and Ramp settings.
Confidence intervals are obtained for the base setting by sampling in-context examples
using 3 seeds. Detailed scores are included in Table B.1.

examples and no attribute marking) across most LLMs and example settings for both
BLEU and formality accuracy. Moreover, BLEU and formality accuracy improve with
increased model size and with the number of examples, until this number reaches 16.
Based on these results, we move forward with the main evaluation using XGLM 7.5B
and Broom 175B models and 16 in-context examples for both datasets.

Table 6.4 presents our main results alongside the adapted MT baseline. The base model
uses in-context examples that are randomly sampled from the pool of labeled examples.
We also include an ablation that adds only attribute marking on top of base prompting,
without similarity retrieval (+mark).

We observe that in the +mark setting, simple attribute marking consistently improves
attribute accuracy of the generated text, but leads to degradation of comer on CoCoA-
MT. The complete Ramp with similarity retrieval not only compensates for the comeT
degradation but also improves quality and attribute metrics across the board, especially
for the high-capacity BLoom 175B model.
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CoCoA-MT \ MT-GenEval

BLEU COMET L-Acc S-Acc|BLEU coMET L-Acc S-Acc
base 28.6 0.463 0.835 0.846 | 23.7 0.445 0.790 0.727

XGLM +mark | 28.7 0.423 0.920 0.902 | 23.7 0.444 0.789 0.732

Ramp | 30.0 0.451 0.938 0.923 | 24.8 0.473 0.836 0.820

Same Lang. base 39.9 0.691 0.930 0.940 | 33.3 0.679 0.748 0.704
proom +mark | 40.3 0.688 0.970 0.970 | 33.1 0.674 0.759 0.725

Ramp | 41.9 0.711 0.973 0.970 | 34.3 0.699 0.817 0.818

Adap. MT 38.5 0.454 0.691 0.693 | 39.6 0.750 0.842 0.864

base 32.1 0.644 0.567 0.596 | 28.5 0.469 0.777 0.633
Ramp | 31.8 0.646 0.625 0.622 | 29.4 0.502 0.788 0.673

Cross Lang. BLOOM

Table 6.4 | BLEU, COMET, Lexical- and Sentential-Accuracy of selected LLMs using
16 same-language in-context examples on two tasks, alongside adapted MT models.
Scores are aggregated across seen languages (w.r.t. BLOOM pre-training) and both
attributes for each task. (Full results in Table B.2-Table B.5.)

Adapted MT outperforms Broom 175B on MT-GeNEvAL in all metrics, but underper-
forms it on CoCoA-MT. This suggests that it is challenging to conduct a fine-grained
comparison between LLMs and standard MT systems, as they may have different do-
main coverage. BLoom 175B consistently outperforms XGLM 7.5B in both generic
translation quality and attribute control accuracy, so we focus on BLoom 175B for our
cross-lingual prompting analysis.

6.3.6 Cross-Lingual Prompting

We have demonstrated the effectiveness of selecting similar same-language examples
to build the prompt, echoing related work (Liu et al., 2022; Agrawal et al., 2023). In
this section, we evaluate the cross-lingual prompting option, i.e., retrieving in-context
examples from other target languages besides the desired language of translation. We
test this zero-shot setting using the leave-one-out strategy, i.e. we retrieve in-context
examples from every language except the desired language of translation. We ensure that
we retrieve an equal number of examples from all languages: the number of examples
retrieved from each language is the total desired number of in-context examples divided
by the number of training languages. In CoCoA-MT, we retrieve 14 in-context
examples from 7 languages. In MT-GENEvAL, we retrieve 8 in-context examples from
8 languages.” Finally, results are averaged across tested language pairs. Languages that

"We reduced the number of in-context examples in this setting to avoid out-of-memory errors
with BLoom 175B.
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are not seen during the LLM pre-training are included among in-context examples,
but not as the target language of the translation task.

Table 6.4 (bottom) presents our results using BLoom 175B. On both test sets, compared
to the baseline, we observe improved attribute accuracy and comparable or better
generic translation quality when using Ramp with cross-lingual prompting.

We observe translation quality degradation with Ramp on some target lan-
guages of CoCoA-MT, such as Spanish. Manual analysis shows that re-

8 For ex-

peatedly inaccurate retrieval results could lead to hallucinations.
ample, Ramp retrieves multiple sentences containing “million” for the input
If you got it why not? He is worth over 20 billion dollars after all. This
results in mistranslation of billion to million (millionario): Si lo tienes, ipor qué no?

Es millonario después de todo. We give detailed examples in Section B.1.3. This is
a known issue with retrieval-based prompting (Liu et al., 2022; Agrawal et al., 2023),
which can be mitigated by using more diverse in-context examples or a larger pool of

training data for retrieval.

6.4 Limitations
We delineate some limitations of our approach and discuss future work directions.

Example Availability and Prompt Sensitivity ~ The proposed formulation of the
Ramp method relies on gold annotations for attribute marking, which are not always
available depending on the dataset. However, Ramp could be easily extended to unsu-
pervised settings through LLM input attribution methods, such as those we presented
in the previous part of this thesis. This approach builds upon recent techniques in
unsupervised language generation metrics (Fomicheva et al., 2021, 2022a; Leiter et al.,
2024). Apart from the choice of in-context examples, prompting is also sensitive to their
ordering (Lu et al., 2022) and the design of the template (Jiang et al., 2020). We refrain
from tuning example orders and templates to avoid introducing too many variables,
but we acknowledge that this could lead to suboptimal results.

Unseen Languages, Computational Resources and Diversity ~ Multilingual LLMs
perform competitively on machine translation for languages seen during their pre-
training. However, we noticed that Boom 175B produces better English—Italian
translations than XGLM 7.5B even though Italian is not listed among BLoom’s training

8Vilar et al. (2023) also observe hallucinations when the retrieved examples have bad translations
(i.e., non-parallel sentences).
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languages. This could be due to typological similarity between Italian and the Romance
languages included in Broom training. Multilingual LLMs such as BLoom also require
significantly more GPU resources for inference than standard bilingual MT systems
do, making them less practical for production deployment. Finally, the MT-GENEvaL
test set is limited in providing only two gender labels ( female and male) as minimal
pairs, while neutral rewriting is not represented.

6.5 Conclusion

As a first step in our exploration of conditioning machine translation generation, we
introduced the Ramp in-context learning for better conditioning performance through
the use of attribute annotations and similar retrieved examples. We demonstrated
its effectiveness with multilingual LLMs for both formality-controlled and gender-
controlled translation, showing that it improves attribute accuracy and translation
quality over standard prompting and adapted MT baselines, including in cross-lingual
settings using relevant in-context examples from other languages. In the next chapter,
we expand our investigation to steering methods that intervene directly in the inner
processing of LLMs and study their effectiveness for personalization in the challenging
domain of literary machine translation.



CHAPTER 7

Steering Language Models for
Personalized Machine Translation

Chapter Summary

This chapter expands our evaluation of machine translation conditioning ap-
proaches by assessing the effectiveness of efficient inference-time interventions
on model internals for personalizing large language models’ outputs. Focus-
ing on the challenging domain of literary translation, we explore prompting
strategies and inference-time interventions using sparse autoencoders to steer
model generations toward personalized translator styles. We propose a contrastive
framework that exploits interpretable latent concepts from SAEs to identify salient
personalization properties, and demonstrate that its strong personalization ac-
curacy, comparable to and at times better than few-shot prompting, does not
come at the cost of translation quality. Our analyses further reveal that successful
SAE steering and multi-shot prompting impact similar model layers, suggesting
similar mechanisms at play.

This chapter is adapted from the paper Steering Large Language Models for Machine
Translation Personalization (Scalena, Sarti, et al., 2025).

I don’t speak, I operate a machine called language. It creaks and groans, but is

mine own.

— Frank Herbert, Dune Messiah (1969)

117
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7.1 Introduction

When we read a translated book, we do not simply read the story in a new language; we
also experience the translator’s personal voice through their stylistic choices. Past efforts
in the automatic translation of literary works have historically been constrained by the
limited capabilities and flexibility of machine translation systems. The recent popu-
larization of MT systems based on large language models has significantly improved
their capacity to handle the long contexts typical of literary translations, but mimicking
the creative and rich language that characterizes the translators’ own style remains
an open issue. In this context, several works have explored the use of prompting and
tuning-based strategies to ensure that translations are stylistically appropriate (Michel
and Neubig, 2018; Wang et al., 2021). However, their influence on model internal
representations is rarely explored, making their impact less controllable and often un-
predictable. Building upon the prompting techniques demonstrated in Chapter 6,
this chapter tackles the more complex challenge of personalizing machine translation
to match individual translator styles. While Ramp focused on explicit attributes like
formality and gender, literary translation requires capturing the subtle, implicit stylistic
preferences that characterize individual translators’ voices. For this purpose, we compare
prompting approaches with steering methods proposed in interpretability literature.
These techniques can be used to surgically intervene on LLMs’ intermediate represen-
tation to generate personalized translations when few examples are available, using the
Par3 dataset (Thai et al., 2022) with multiple human translations for novels translated
into English from 7 typologically diverse languages.

We begin with preliminary assessments by verifying whether translators’ styles are
discernible by automatic systems, finding that trained classifiers can distinguish writing
styles with high accuracy, while the task is notoriously challenging for human annotators
(Youyou et al., 2015; Flekova et al., 2016). We also find a simple prompting setting with
in-context personalization examples to improve the style accuracy of LLM translation,
suggesting personalized translation styles are reproducible. We connect the conditioning
induced by prompting to the inner workings of the model, identifying activations with
high discriminative capacity for style differences in intermediate model layers. We then
propose a contrastive steering approach based on sparse autoencoders (SAEs, Huben
et al. (2024)) to condition model generations by upweighting sparse, interpretable
latents at inference time. We validate the effectiveness of our method across three LLMs
of various sizes on Par3 novels, comparing our results with established prompting and
steering methods.

Our results show that contrastive SAE steering is a promising approach for MT person-
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Figure 7.1 | We compare prompt-based approaches with steering techniques interven-
ing on model internals for personalizing MT outputs in literary machine translation,

employing MT quality metrics and style classifiers to disentangle the effect of steering
on outputs fluency and personalization adequacy.

alization, resulting in translations that not only align more closely with general human
translation features but also with the desired personalized style compared to other meth-
ods. Importantly, these results are achieved with no degradation in translation quality,
according to established MT quality metrics. We conclude by comparing the impact
of our method on model representations with the outcome of multi-shot prompting,
finding that probes trained on prompt-conditioned activations can predict the effective-
ness of SAE steering with high precision. These results confirm that tested prompting
and steering techniques converge to similar solutions for conditioning model behavior,
enabling future investigations into the mechanistic impact of prompting through the
study of learned SAE latents and other interpretable components.
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7.2 Related Work

Machine Translation of Literary Texts  The literary domain has historically been
challenging for automatic MT systems due to their limited ability in handling rich
linguistic and cultural contexts (Matusov, 2019) and their propensity to produce overly
literal outputs (Guerberof-Arenas and Toral, 2022). Automatic literary translation
has a long history dating back to pre-neural MT approaches (Voigt and Jurafsky,
2012; Toral and Way, 2015, 2018; Moorkens et al., 2018) with two recent dedicated
evaluation campaigns (Wang et al., 2023b, 2024a). The advent of LLMs has brought
new opportunities in processing longer contexts for document-level translation (Wang
et al., 2023a; Briakou et al., 2024; Wu et al., 2025), but critical errors requiring human
translators’ intervention nonetheless persist (Karpinska and Iyyer, 2023). Here, we use
the Par3 dataset (Thai et al., 2022) containing multiple human translations of novels to
evaluate MT personalization in the literary domain.

Personalization for Machine Translation ~ Advances in MT quality recently led
to a growing interest in personalization approaches to ensure a consistent format and
appropriate stylistic choices in model generations (Rabinovich et al., 2017; Lin et al.,
2021). Previous approaches for controlling attributes such as formality (Sennrich et al.,
2016a; Niu et al., 2017; Nadejde et al., 2022) or gender (Vanmassenhove et al., 2018;
Saunders and Byrne, 2020) typically required tuning existing models on pre-defined
properties of interest, with few works attempting a real data-driven adaptation from
unlabeled demonstrations (Michel and Neubig, 2018; Wang et al., 2021; Zhang et al.,
2022). More recently, several studies employed prompting (Garcia and Firat, 2022; Sarti
et al., 2023b) or preference optimization from post-editing behavior (Lee et al., 2023a;
Berger et al., 2024) to render MT personalization more effective and data-efficient. We
complement established prompt methodologies with steering approaches to personalize
MT outputs using a few user-provided examples.

7.3 Preliminaries

Before testing the effectiveness of personalization strategies, we validate some key
assumptions: i) Whether the personalized translation style is discernible, i.e., if it is
possible to tell apart human- and machine-generated translations; ii) Whether different
translation styles are automatically reproducible, i.e., if LLMs can mimic a specific trans-
lator’s style when provided with some examples; and iii) Whether style distinctions are
reflected in the model’s internal representations, to motivate the interest in steering
approaches for personalization.
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ZH — EN BAGE:  [BEat, fFiRE. ]

H, "Such being the case," the Taoist acquiesced, "I am ready to follow you, whenever you
please to go."
"Very good, I will go with you then," said the Taoist.

Gemma 2 2B "If that’s the case, then go ahead" said the Taoist.
Gemma 2 9B "If so, then I will go with you" the Taoist said

Llama 3.1 8B The Taoist said: "If you insist on going, then go ahead.”

IT — EN Sara leffetto dell’'acqua del mare. Il mare ne fa di questi scherzi

H; "The salt water must have done it. The sea plays funny tricks."
"It must have been the effect of sea-water. The sea makes extraordinary changes."

Gemma 2 2B "It will be the effect of the sea water. The sea makes of these jokes."
Gemma 2 9B It will be the effect of the sea water. The sea plays these tricks.

Llama 3.1 8B It will be the effect of the sea water. The sea does things like this.

Table 7.1 | ZH—EN and IT—EN examples for Par3 segments translated by humans
(Hy,H.) and LLMs with zero-shot prompting (MT). More examples in Table B.8,
Table B.7.

We use the Par3 dataset by Thai et al. (2022), which contains multiple non-English
novels, as a benchmark to evaluate personalization. Novels are segmented into para-
graphs with translations into English by two professional literary translators. To ensure
a diverse and representative evaluation, we select novels spanning a variety of linguistic
families and cultural backgrounds. Our dataset includes Romance languages such as
Italian (Pinocchio) and French (Around the World in Eighty Days), as well as Germanic
languages like Dutch (The Diary of a Young Girl) and German (Beware of Pity). To
evaluate our setup on non-Latin scripts and distinct linguistic structures, we also include
Russian (Crime and Punishment), Japanese (No Longer Human), and Chinese (Dream of
the Red Chamber). Table 7.2 summarizes the number of paragraphs employed in the
evaluation of each language.

Examples for a subset of languages are shown in Table 7.1. We name the two available
human translations H; and ., and compare them with MT outputs produced by
LLMs, which we denote as MT 4. We use three LLMs, namely Llama 3.1 8B Instruct
(Team, 2024b) and Gemma 2 (Team, 2024a) in its 2B and 9B instruction-tuned variants.
Our model selection is motivated by our steering requirements, discussed in Section 7.5.



122 7. Steering Language Models for Personalized Machine Translation

Lang Novel name Train  Val  Test
Italian (IT) Pinocchio 745 82 107
French (FR)  Around the World in Eighty Days 8290 92 120
Dutch (NL) The Diary of a Young Girl 769 85 110
German (DE)  Beware of Pity 606 67 96
Russian (RU)  Crime and Punishment 1517 168 224
Japanese (JA)  No Longer Human 652 40 81
Chinese (ZH)  Dream of the Red Chamber 694 76 92

Table 7.2 | Languages and novels used in our evaluation. Numbers corresponds to a
single paragraph in the dataset. In training, each paragraph is associated with three
distinct translations: Hy,H., and MT. 20 additional in-context examples are left aside
for each language for prompting and steering methods.

7.3.1 Are Personalized Translations Discernible?

Following prior work on personalization (Wang et al., 2024c; Liu et al., 2023b), we train
a series of classifiers based on multilingual XLM transformer encoders (Conneau et al.,
2020) to distinguish between Hy, H., and M T translations. If those systems can reliably
separate these three classes, it suggests the presence of reasonably distinct stylistic signals
differentiating them. In particular, the ability to distinguish between H; and H, would
denote not only the possibility to discern a human-like style from human-made and
automatic translations, but also a personalized style from different human translators.

We train a classifier for each language and each model in our evaluation suite. All clas-
sifiers are fine-tuned from the xIm-roberta-large model, using a linear classification
head. Training is conducted for 6 epochs with a learning rate of 2e-5 and a batch size
of 32, selecting the best model checkpoint based on validation accuracy. Training data
only includes generations from models and the translator without any source text. It
is also perfectly balanced, as each paragraph provides one instance for all three labels:
H;, Ho, and MT. The total size of the training set varies depending on the number of
paragraphs in the chosen novel. On average, we obtain approximately 830 instances,
resulting in a total of around 2,490 labeled examples for training (see Table 7.2). Valida-
tion and test sets are strictly held out and never seen during training. Additionally, they
do not include the small 20-example subsets used for prompting or steering. Results in
Table 7.3 indicate that translation styles are discernible with high accuracy. On average,
across all models and languages, the classifiers achieve an accuracy ranging from 77%
(Japanese) to 99% (Chinese), with an overall average of 86%. These results suggest

! FacebookAI/x1m-roberta-large
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Lang. | Gemma22B Gemma29B Llama3.18B

DE 0.89 0.90 0.84
RU 0.92 0.90 0.91
ZH 0.99 0.98 0.98
IT 0.78 0.85 0.80
NL 0.79 0.78 0.82
FR 0.88 0.87 0.90
JA 0.76 0.79 0.76

Table 7.3 | Accuracy of model- and language-specific 3-way (H;,H., MT) classifiers
on balanced held-out sets for every language. Random baseline: 0.33.

that personalization information is abundant in the literary setting and can plausibly be
exploited for modeling. These findings corroborate previous results showing the high
learnability of this task by machines while remaining intrinsically difhcult for human
annotators (Youyou et al., 2015; Flekova et al., 2016; Wang et al., 2024b).2

7.3.2 Can LLMs Reproduce Human Translation Styles?

To confirm whether MT personalization can be achieved, we test the LLM’s ability to
mimic the stylistic choices of a particular translator in a multi-shot (MS) prompting
setup. For each translator available across tested novels, we provide the model with 20
in-context examples selected from the original pool of translated paragraphs by that
translator, asking it to generate a consistent translation. We compare MS results with
the default zero-shot (ZS) prompting, which uses no examples from the translator, to
quantify the effect of in-context examples. Table 7.4 presents results for personalization
accuracy, automatically evaluated using our high-scoring classifiers from the previous
section; and translation quality, estimated via the widely used comer MT metric (Rei
et al., 2020). The proportion of outputs categorized as matching the translator’s style
is increased two- to four-fold following MS prompting, suggesting that LLMs can
employ implicit clues in small sets of user examples to produce personalized translations.
Stable scores for coMET also confirm that translation quality is maintained during style
adaptations.

2Two human annotators were asked to label 100 translated paragraphs from the novel Pinocchio
(IT—EN) as either human or MT, resulting in an accuracy of ~ 60%.
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‘ Gemma22B Gemma29B Llama 3.1 8B

ZS | 0.10 0.69 0.08 0.71 0.08 0.70
MS | 0.24 0.69 0.31 0.73 0.32 0.73

Table 7.4 | Classifier-based personalization accuracy (#) and Comet-based translation
quality () for zero-shot (ZS) and multi-shot (MS) prompting with 20 in-context
examples averaged across all translators and languages.

7.3.3 Finding Personalization Information in LLM Representations

In light of these results, we set out to test how the model encodes information reflecting
a stylistic shift when style-appropriate examples are provided. To this purpose, we train
linear probes (Belinkov, 2022) using model activations as input features to predict the
style label (MT, Hy, or H.) that the style classifier (from Section 7.3.1) would assign to
the eventual translation, based purely on the prompt’s internal representation. Probing
accuracy is measured by testing the model’s ability to predict the classified outcome
before generation, using only the prompt representation formed by the model. Given a
test set of human-translated paragraphs, we train our probes on a set of examples using
an MS prompt with 20 in-context examples. The set is balanced between prompts that
showcase personalization with gold in-context examples from a human translator and
non-personalized prompts with MT-generated examples previously produced by the
same tested model in a ZS setup. Test examples are selected from the respective novels
to ensure for the classifier prediction shifts from MT in the ZS setting to the style of
in-context examples when MS is used, signaling a causal influence of demonstrations on
output personalization.® This balanced setup prevents the leakage of task information,
such as the number of in-context examples, to learned probes, ensuring that stylistic
differences between human- and machine-generated in-context examples are the sole
factor determining differences in model activations. We focus specifically on Gemma
models, extracting activations after the attention block at each model layer for the
last token of the prompt, which was previously shown to encode key task-relevant
information (Hendel et al., 2023; Todd et al., 2024; Scalena et al., 2024). Figure 7.2
reports probe accuracies across all layers of Gemma 2 2B and 9B. We find a peak in
probe accuracy of ~ 95% around intermediate model layers, suggesting that these
layers encode stylistic information with near-perfect precision.* These results confirm

SExamples are resampled for every test paragraph to prevent the probe from overfitting on spurious
prompt features.
“We find probes for layers 13 and 21 to perform best for the 2B and 9B models, respectively.
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Figure 7.2 | Probing classifier performance on the human translation detection task
across Gemma 2 2B (left) and 9B (right) layers. Activations in intermediate layers are
found to capture translation style information with high precision.

that personalization is discernible from LLMs’ internal representation, motivating our
experiments towards the design of inference-time interventions to steer models towards
personalized MT outputs.

7.4 Methods

We begin by introducing the prompting and steering methods that we use as baselines
and outline our own proposed SAE-based steering approach for personalized translation.

7.4.1 Prompting Baselines

Zero-Shot (ZS)  The ZS setup used in our main experiment corresponds to the one
from Section 7.3.1, in which the model is simply asked to produce a translation with
no conditioning from examples or explanations towards the target translation style. We
use this setting to establish a baseline style and translation quality performance for the
models.

Zero-Shot Explain (ZS-Exp)  Building upon the ZS setting, we experiment with a
prompting strategy where LLMs are provided with detailed explanations of the most
salient elements that characterize the desired translation style. We obtain such descrip-
tions by prompting a capable proprietary model, GPT-40 (OpenAl, 2023), with 20
translations matching the desired style, asking it to synthesize a set of guidelines to match
the examples. We evaluate two contrastive variants of this approach, providing GPT-40
with either MT examples (ZS-Expyr) or alternative human translations (ZS-Exppr)
alongside examples matching the desired style, and asking to describe what characterizes
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the latter compared to the former. To avoid data leakage, all generated explanations
are manually reviewed to ensure they do not contain any verbatim content or direct
excerpts from the input examples.> Tested models are then prompted with GPT-40
explanations in a ZS setting, to verify whether interpretable directives synthesized from
a set of examples matching the desired behavior can produce reliable personalization
results.

Multi-Shot (MS)  Following Section 7.3.2’s findings, we adopt the same MS setup
using 20 in-context translation examples matching the style of a target human translator
(Hy or H.).

7.4.2 Steering Baselines

We employ the Activation Addition (ActAdd) and Representation Fine-tuning (ReFT)
methods introduced in Section 2.3.2 as baselines for comparing the effectiveness of our
proposed method. For ActAdd, we employ the standard contrastive formulation by
Rimsky et al. (2024) and Scalena et al. (2024) to extract two sets of style-relevant ({z} )
and default ({z} ™) activations from a given model layer using 20 in-context examples
demonstrating default behavior (M T) and the desired behavior (H; or H. translations),
respectively. We then compute the average A steering vector between the two sets of
activations, scale it by a factor of a = 2, which was found to be effective by previous
research (Scalena et al., 2024), and apply it additively to the same model layer during
inference. For REFT, we apply learned interventions to the same personalization-
relevant layers identified in Section 7.3.3 and limit confounding factors by tuning ReFT
interventions with the set of 20 examples used for MS prompting.

7.4.3 Contrastive SAE Steering

Given the SAE formulation we present in Section 2.3.2, our primary interest lies in the
sparse latents h(z;) € R™ learned by the SAE encoder, which were empirically found
to capture monosemantic and interpretable properties of model inputs.

Contrastive prompt setup  Given a set of paragraphs D for a novel in the Par3
dataset, each instance in it is a tuple:

D= {<8, Hi, Ha, MTmodel>}

5Details on the prompt templates are in Section B.2.1.4.
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with s being the non-English source sentence, H; and Hy translations from two dis-
tinct human translators and M T, 4. the machine translation from the model under
evaluation. Similar to previous methods, we employ a contrastive approach to extract
SAE latents that are most active in the presence of the desired personalization style,
while simultaneously controlling for more generic features that capture the generic
properties of the task. We define two sets of contrastive prompts:

Dt = {<s,e+>} and D~ = {<8,€7>}

capturing the personalized style of interest and baseline properties of the task, re-
spectively. Similarly to the ZS-Exp setup from Section 7.4.1, we explore two D~
configurations using either e~ = MT (SAE Cont.yr) or e~ = H. (or Hy, if H, is the
personalization target; SAE Cont.pr) to assess the effect of baseline choice on steering
effectiveness.

Feature extraction  First, we gather activations z;” and z;” by prompting the model
with inputs from the two contrastive sets D and D~. Activations are extracted at the
last prompt token position from its most informative layer, as identified in Section 7.3.3.
Activations are then converted into sparse latent representations z+ = h(z*") and
z= = h(z7), with 2*,2= € R™ by the SAE encoder. This procedure is repeated
across 20 contrastive examples, resulting in two collections of SAE latent vectors for
positive/negative examples:

Xt = {wf,zg',...,l';o}

X = {xf7x5,...,x;0}

Relevance-based Feature Selection  To identify discriminative features for per-
sonalization in the large set of latents, we employ an information-theoretic approach
adapted from Zhao et al. (2025). For each of the inputs, we identify the subset of size
n < m that includes only the SAE active features, i.e., the latent dimensions for which
the logit is greater than 0. We consider logit values in this subset as instances of a
random variable X; € z, and calculate the mutual information I(X;,Y’) between each
feature X; and the target binary variable Y = {4, —} corresponding to the style of
the provided examples (personalized or non-personalized). A higher I(X;,Y) indicates
that the i-th feature is more informative for discriminating between personalized and
default inputs, and can hence be used for steering. A representative sample of 40 la-
tents showing the highest mutual information scores for both personalized ({X;} )
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and non-personalized ({X;}~) examples is selected using this procedure.’ For every
selected latent, we compute its expected logit when personalization is present or absent
in provided examples, i.e. E*[X;] and E~[X;].

Inference-time intervention  Finally, activations are steered by setting selected
latents to their expected value whenever their observed score is below (for the promoted
personalized case) or above (for the demoted non-personalized case) the pre-computed
average. Hence, in the SAE Cont.yr setting we enhance the features relevant to
a target personalized style, e.g. {X;}* for Hi, and suppress the features {X;}M7,
corresponding to the model’s default M'T. In SAE Cont.pr, instead, we promote the
same H-related latents while suppressing {X;}2 to steer the model towards H;
personal style. Additionally, we modulate the magnitude of the resulting vector with
an « coefficient, which was found to play an essential role in steering effectiveness in
previous research (Scalena et al., 2024; Ferrando et al., 2025). Algorithm 3 outlines
the procedure for our proposed latent-based steering. It enhances features identified as
relevant to personalization while simultaneously suppressing those negatively correlated
with the task.

7.5 Experiments

7.5.1 Setup

Model selection  We evaluate our methods on the same three models used for our
preliminary evaluation of Section 7.3. Our selection is guided by the availability of open-
source pre-trained SAEs, which can be computationally expensive to train otherwise.
For Gemma models, we employ SAEs from the GemmaScope suite (Lieberum et al.,
2024); for the Llama 3.1 model, we employ the SAE released by McGrath et al. (2024).
GemmaScope SAEs are available for every model layer, enabling us to steer Gemma
models on their most informative layers for the task, which we identified in Section 7.3.3.
On the contrary, a single SAE for the 19th layer is available for Llama, hence limiting
our evaluation of SAE steering and potentially producing sub-optimal steering results
for that model.

Metrics  We evaluate our approaches on a held-out test set sourced from the Par3
dataset for personalization and output quality. For personalization, we use the classi-
fiers described in Section 7.3.1. We define three submetrics employing the classifier

By contrast, traditional SAE-based steering methods only employ features associated with the
positive class (Chalnev et al., 2024; Arditi et al., 2024).
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Algorithm 3 Contrastive SAE Steering

Require: Input activation z, SAE model, target latents expected value E*[X;], contrast
latents expected value E~[X;], steering coeficient o
Ensure: Steered activation Zpew
1: procedure CONTRASTIVESTEERING(2, SAE, E* [X;],E~[X,], a)
2: = SAE.encode(?)

3 m = length(x)

4 fori < 1tomdo

5 if ET[X;] > z[i] then
6: z[i] = ET[X}]

7 end if

8 if E7[X;] < z[i] then
9 z[i] = E7[X}]

10 end if

11: end for

12: Znew = a - SAE.decode(x)
13: return Zpew

14: end procedure

probability distribution over the three classes (M T, Hy, F.) to better analyze different
aspects of classifiers’ predictions. First, we compute H accuracy as the classifier’s total
probability assigned to human-like translations, p(H;) + p(H.), thereby measuring
the generic human-like style of the text. To measure personalization, we employ the
personalization P, corresponding only to the human translation currently selected as
target (H; or 1.). Finally, the more stringent Pg;p, metric measures the proportion of
examples for which the applied conditioning procedure (either prompting or steering)
causally influences the resulting classifier prediction, identifying examples for which
the label flips from MT to the desired target.

To ensure that our interventions do not result in a degradation of overall translation
quality, we also employ comeT” (Rei et al., 2020) using the personalized translation as
reference.

Quality-accuracy trade-off ~We begin by verifying the optimal steering intensity
a for our SAE steering technique. We primarily focus on results from Gemma 2 2B, for

7 Unbabel/wmt22-comet-da
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Source (FR) Cette somme vous sera restituée 4 votre sortie de prison, dit le ul
juge. En attendant, vous étes libres sous caution.

H, This sum of money will be returned to you when you leave prison,” - -
said the judge. ’In the meantime you are free on bail.
This amount will be returned to you upon your release from prison, ~MT  0.79
the judge said. Meanwhile, you are free on bail.

SAE COHt.HT
a=5 This sum will be repaid to you at your departure from prison, the ~ MT  0.85
Jjudge declared. In the meantime, you are released under bond.
a =50 #echo all ought to goodness too was put moreover goodness behaving — H; 0.20
goodness goodness goodness goodness [...]
a =150 GURL callers goodness_Noneummy amiddla Reportedaps Beaver- — H, 0.23
ishlor Decompiled_unset queer headquarters Headquarters twe ... [...]
Source (DE) Nein — was Sie lieber haben, Herr Leutnant! Nur keine Zere-  u
monien, es ist doch ganz einerlei.
"No, no-whatever you would rather have, Lieutenant Hofmiller! - -
Please don’t stand on ceremony, it makes no difference to us."
No, whatever you prefer, Lieutenant! Just no ceremonies, it doesn’t ~ MT  0.76
maltter.
SAE Cont.yt
a=5 No, anything at all you want, sir! Just don’t make a fuss about it, it 0.79
really doesn’t matter.
a =50 ">I Don’t worry about that... I don’t want a ceremony for this one. 0.46
I’s not important...
a =150 IW henInW hatltDonlf Sometimes Als Celebrating cerimonies... 0.24

Sosir please don’t have parties ey’ [...]

Table 7.5 | Examples from different languages being classified as Human when using
extreme « values.

which we ran a comprehensive sweep over all relevant hyperparameters.® Figure 7.3
illustrates the influence of &« on MT personalization accuracy and fluency averaged across
all translators for all tested languages. For values of o < 3, performance remains close
to that of the MS baseline, indicating that the contrastive method is effectively isolating
latents associated with human-like style. As v increases, performance generally exceeds
the MS approach, achieving greater control and flexibility in guiding the model’s output
with minimal impact on translation quality. However, for & > 10, we observe a notable
degradation in comET, suggesting an important drop in translation fluency. Table 7.5

8Larger models were evaluated using a subset of the best-performing configurations. Details in
Section B.2.2.
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Figure 7.3 | Personalization P and coMET across various steering intensity a for SAE
Cont.yt on Gemma 2 2B. The performance of zero-shot multi-shot (MS), zero-shot
explain (Exp) and zero-shot (ZS = 0) baselines is also reported.

shows some examples of models generating output aligned with the Human translator
according to the classifier, but with a low comeT score corresponding to an almost
unreadable output due to extreme o values. False positive classifications in such settings
suggest that steering methods and classifiers are aligned with potentially spurious stylistic
features, which are not necessarily indicative of high-quality translations. We leave the
investigation of these spurious features to future work, focusing here on the trade-off
between personalization and translation quality.

Following Ferrando et al. (2025), which also employ SAEs for steering, we experiment
with very high alpha values (up to 150), finding the classifier’s H accuracy approaching
100% for some languages. While this indicates that the contrastive steering is aggres-
sively optimizing toward classifier preferences (Figure 7.4), the consequent drop in
COMET scores reveals a steep decline in translation quality, often resulting in incoherent
or nonsensical generations from a human perspective. Ultimately, we identify a = 5 as
an appropriate steering intensity to balance personalization and fluency, and employ it
for our main evaluation.

7.5.2 Results and Discussion

Table 7.6 presents performances of tested models across prompting and steering setups,
averaged across all languages and personalization targets (H; and 1. for each language).
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Figure 7.4 | comeT and H accuracy across « steering intensity values for Gemma 2 2B,
showing a major drop in translation quality for very high intensities (o > 50).

We find that our SAE Cont.pyr and SAE Cont.pr methods generally achieve the best trade-off
between personalization accuracy and translation quality, especially for the smaller Gemma
2 2B model. This could be due to the larger models’ superior ability to incorporate
in-context information naturally, reducing the relative benefit of explicit steering.
Comparing the two contrastive setups (HT and PT) for the ZS-Exp and SAE Cont.
methods, we find that using different human demonstrations as a contrastive baseline in PT
generally produces better results for larger models. As for general performance, we conjecture
this could be due to the larger models’ improved ability to disentangle personalization-
critical factors without explicit guidance. For the smaller Gemma 2 2B, the difference
between the two approaches is minimal, suggesting that the model cannot fully exploit
the differences between the examples.

Do SAE Steering and MS Prompting Impact Activations in a Similar Way?

Since SAE-based approaches perform on par or better than MS, we set out to investigate
whether the two methods result in a similar impact on model representations. We
collect the modified activations zyeer obtained from the SAE Cont.yt steering setting
and evaluate them using the probing classifier trained on MS-conditioned activations,
as introduced in Section 7.3.3, for detecting personalization information. Table 7.7
shows probe accuracy in detecting the positive impact of SAE steering across the three
possible outcomes of the steering procedure. We find that the probe trained on the
SAE layer effectively distinguishes between activations corresponding to successful
and unsuccessful SAE steering, despite having been exposed only to MS condition-
ing during training. This includes both instances where the classifier prediction is
flipped after steering (MT — H) and settings where the conditioning fails (MT — MT).
In settings where the original output already matches human style (H — H), the probe
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Gemma 2 2B Gemma 2 9B LLaMA 3.1 8B
H P Py | H P Py, H P Py
ZS 0.21 0.10 0.05 0.69]0.15 0.08 0.04 0.71]0.24 0.08 0.05 0.70
ZS-Expyr 030 0.22 0.16 0.68|0.41 0.22 0.18 0.72]0.56 0.23 0.21 0.69
ZS-Exp.pr - 020 0.14 0.69| - 023 0.19 0.73| - 0.30 0.26 0.70
MS 0.37 0.24 0.16 0.69|0.48 0.31 0.27 0.73]0.58 0.32 0.28 0.73
ActAdd 0.27 0.22 0.12 0.67]0.32 0.24 0.20 0.70]0.55 0.36 0.28 0.70
ReFT 0.31 0.22 0.18 0.70|0.46 0.34 0.27 0.67|0.53 0.38 0.26 0.70
SAE Cont.yr 0.39 0.27 0.19 0.70|0.46 0.33 0.29 0.72]0.59 0.31 0.27 0.72
SAE Contpr - 0.27 0.18 0.69| — 0.35 0.29 0.73| - 0.33 0.28 0.72

Table 7.6 | Averaged metric scores across all tested languages (per-language breakdown
in appendix). H: human style accuracy, i.e. p(H1) + p(11.). P: personalization accuracy
p(H.) for the target style. Pg;,: Proportion of segments for which steering has a causal
impact on personalization. o = 5 is used for SAE Cont. results.

MT - H* MT-—-MT H'—H"

Gemma 2 2B 0.94 +0.01 0.07 +0.02 0.72 +0.15
Gemma 29B  0.93 +0.02 0.12 +0.10 0.68 +0.19

Table 7.7 | Probing accuracy on ContHT-steered activations averaged across languages
and H;/H,, translators. Probes trained on MS activations reliably detect the impact of
SAE Cont. steering over model generations, suggesting similar mechanisms.

obtains lower accuracy with broader confidence intervals, denoting higher uncertainty.
These findings suggest that the SAE’s latents we extract through our contrastive
method are meaningfully connected to the stylistic patterns embedded in the
multi-shot examples, providing evidence that our intervention influences the internal
representations of the model, aligning them to the natural effect of the MS approach.

7.6 Limitations

While we demonstrates the potential of steering LLMs for MT personalization using
sparse autoencoders, we acknowledge several limitations.

Firstly, the generalizability of our findings is constrained by the scope of our exper-
iments. We focused on literary translation from seven specific source languages into
English and evaluated three LLMs of relatively small size. Consequently, the observed
effectiveness of SAE-based steering and the identified optimal layers for intervention
may not directly transfer to other language pairs, significantly different model archi-
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tectures or sizes, or distinct domains beyond literary texts. Further research is needed to
assess the robustness of our approach across a broader range of linguistic and modeling
contexts.

Secondly, the computational overhead associated with sparse autoencoders presents
a practical challenge. Although we utilized pre-trained SAEs in our study, the initial
training of these components is resource-intensive. This could limit the accessibility
and scalability of our proposed method, particularly for researchers or practitioners with
limited computational resources or when frequent retraining for new models or tasks is
required. The current availability of pre-trained SAEs also restricts model choice, as
seen with the Llama 3.1 8B model, where an SAE was only available for a potentially
sub-optimal layer.

Finally, our investigation primarily focused on downstream performance and the impact
of various personalization strategies on model representations. However, we did not
pursue a mechanistic understanding of the “personalization circuits” within the LLMs.
Future work could adopt a more fine-grained mechanistic interpretability approach to
study how specific SAE latents or combinations thereof encode and manipulate nuanced
stylistic features, thereby providing deeper insights into the underlying processes of
LLM personalization.

7.7 Conclusion

We conducted a broad evaluation of various prompting and steering approaches for
personalizing LLM-generated translations. Our evaluation targets a practical, real-
world application of literary translation and addresses the underexplored challenge
of steering LLM generations in a linguistically rich and stylistically sensitive domain.
Through comprehensive evaluation across multiple languages, novels, and models,
we demonstrate that our proposed SAE-based approach outperforms prompting and
alternative steering techniques.

Although faithfully replicating individual human translation styles remains a highly
challenging task, our approach achieves strong alignment with human translation qual-
ity, as reflected in both general human-likeness and translator-specific personalization
metrics. These results highlight the method’s robustness and its potential to support
high-fidelity translation workflows in real-world settings. Concretely, these results have
important implications in the development of personalized MT systems based on LLMs.
In particular, the notable effectiveness of our proposed approach on smaller models
might enable MT customization when few examples are available, facilitating further
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research on how personalization information is encoded and produced by language
models. Despite their effectiveness, the interpretability of the learned SAE latents and
their potential use with larger LLMs—where increased capacity may further enhance
the precision and fluency of personalized translations—remain open questions for future
investigation.

The success of SAE-based steering for personalized translation highlights the effective-
ness of internals-based interventions for controlling model generation. However, the
practical deployment of such approaches requires a careful evaluation of their impact
on users’ trust and behaviors. The first two parts of this thesis focused on developing
methods for analyzing and steering model generation. The third and final part, begin-
ning with the next chapter, focuses instead on the users of machine translation systems,
specifically professional post-editors and translators, to explore how their interactions
with machine-translated content are shaped by factors such as language similarity and
translation quality. Finally, we investigate whether these interactions can be improved
using the trove of information available from the inner workings of MT models.
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CHAPTER 8§

Machine Translation Post-editing
for Typologically Diverse
Languages

Chapter Summary

This chapter begins our investigation into the application of interpretability
methods in user-facing translation settings. As an initial step in this direction, we
introduce DivEMT, the first publicly available post-editing dataset spanning six
typologically diverse target languages. We evaluate the impact of MT quality
and translation directions on post-editing effectiveness in a controlled setup
involving 18 professional editors through comprehensive behavioral logging of
edits, keystrokes, timing, and pauses. While we find that post-editing machine
translation is consistently faster than translation from scratch, our results show
significant disparities across languages with different typological relationships to
English, even when controlling for system architecture and data size, highlighting
the need for tailored approaches in MT for diverse languages.

This chapter is adapted from the paper DivEMT: Neural Machine Translation
Post-Editing Effort Across Typologically Diverse Languages (Sarti et al., 2022).

Language was just difference. A thousand different ways of seeing, of moving
through the world. No, a thousand worlds within one. And translation, a necessary
endeavor however futile, to move between them.

— Rebecca F. Kuang, Babel (2022)
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Figure 8.1 | The DIVEMT data collection process. For every English source document,
18 professional translators are tasked with translating it from scratch (HT) or post-
editing NMT systems’ outputs (PE1/PEs) into six typologically diverse target languages.
Behavioral data and qualitative assessments are collected during and after the process,
respectively.

8.1 Introduction

Recent advances in neural language modeling and multilingual training have led to
the widespread adoption of machine translation (MT) technologies across an unprece-
dented range of languages worldwide. While the benefits of state-of-the-art MT for
cross-lingual information access are undisputed (Gene, 2021), its usefulness as an aid
to professional translators varies considerably across domains, subjects and language
combinations (Zouhar et al., 2021b). In the last decade, the MT community has been
including an increasing number of languages in its automatic and human evaluation
efforts (Bojar et al., 2013; Barrault et al., 2021). However, the results of these evaluations
are typically not directly comparable across different language pairs for several reasons.
First, reference-based automatic quality metrics are hardly comparable across different
target languages (Bugliarello et al., 2020). Second, human judgments are collected
independently for different language pairs, making their cross-lingual comparison vul-
nerable to confounding factors such as tested domains and training data sizes. Similarly,
recent work on NMT post-editing efficiency has focused on specific language pairs
such as English-Czech (Zouhar et al., 2021b), German-Italian, German-French (Liubli
et al,, 2019) and English-Hindi (Ahsan et al., 2021). However, a controlled comparison
across a set of typologically diverse languages is still lacking.

In this chapter, we conduct an initial assessment of the usefulness of state-of-the-art
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NMT in professional translation with a strictly controlled cross-language setup (Fig-
ure 8.1). Specifically, professionals were asked to translate the same English documents
into six typologically distinct languages—Arabic, Dutch, Italian, Turkish, Ukrainian,
and Vietnamese—using the same platform and guidelines. Three translation modal-
ities were adopted: human translation from scratch (HT), post-editing of Google
Translate’s translation (PE;), and post-editing of mBART-50’s translation (PE,), the
latter being a state-of-the-art open-source, multilingual NMT system. In addition
to post-editing results, subjects’ fine-grained editing behavior, including keystrokes
and time information, was logged to measure productivity and effort across languages,
systems and translation modalities. Finally, translators were asked to complete a qual-
itative assessment regarding their perceptions of MT quality and post-editing effort.
The resulting DIVEMT dataset, to our best knowledge, is the first public resource that
allows a direct comparison of professional translators’ productivity and fine-grained
editing information across a set of typologically diverse languages. All collected data
are publicly released! alongside this paper to foster further research in the language-
and system-dependent nature of NMT advances in real-world translation scenarios.

8.2 Related Work

Cross-lingual MT Evaluation  Before the advent of NMT, Birch et al. (2008) studied
how various language properties affected the quality of Statistical MT (SMT) across a
sizeable sample of Buropean language pairs. The comparison, however, was solely based
on BLEU, which is not directly comparable across different target languages (Bugliarello
etal., 2020). Recent work on neural models introduced more principled ways to measure
the intrinsic difficulty of language-modeling (Gerz et al., 2018; Cotterell et al., 2018;
Mielke et al., 2019) and machine-translating (Bugliarello et al., 2020; Bisazza et al.,
2021) different languages. However, reliably achieving this without human evaluation
remains an open research question. Concurrently to our research, Licht et al. (2022)
proposed a new human evaluation protocol to improve consistency in cross-lingual
MT quality assessment.

Post-editing NMT  Recent work highlighted the productivity gains driven by
NMT post-editing on a broader array of languages that were previously challenging
for MT, such as English-Dutch (Daems et al., 2017a), English-Hindi (Ahsan et al.,
2021), English-Greek (Stasimioti and Sosoni, 2020), English-Finnish and English-
Swedish (Koponen et al., 2020), all showing a considerable variance among language

1 GroNLP/divemt
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pairs and subjects. Interestingly, Zouhar et al. (2021b) found that NMT post-editing
speed was comparable to translation from scratch in English-Czech, and highlighted a
disconnect between moderate increases in automatic MT quality metrics and improved
post-editing productivity. In summary, research on post-editing NMT generally
reports increased fluency and output quality; however, productivity gains are hardly
generalizable across language pairs and domains. Importantly, to our knowledge,
no previous work has studied NMT post-editing over a set of typologically different
languages while controlling for the effects of content types and domains, NMT engines,
and translation interfaces.

8.3 The DIvEMT Dataset

DivEMT’s primary purpose is to assess the usefulness of state-of-the-art NMT for
professional translators and to study how this usefulness varies across target languages
with different typological properties. We present below our data collection setup, which
strikes a balance between simulating a realistic professional translation workflow and
maximizing the comparability of results across languages.

8.3.1 Subjects and Task Scheduling

To control for the effect of individual translators’ preferences and styles, we involve a
total of 18 subjects (three per target language). During the experiment, each subject
receives a series of short documents (3 to 5 sentences each) where the source text is
presented in isolation (HT) or alongside a translation proposal produced by one of the
NMT systems (PE;, PE;). The experiment comprises two phases: during the warm-up
phase a set of 5 documents is translated by all subjects following the same, randomly
sampled sequence of modalities (HT, PE; or PE,). This phase allows the subjects to
become accustomed to the setup and enables us to identify potential issues in the logged
behavioral data before proceeding.? In the main collection phase, each subject is
asked to translate documents in a pseudo-random sequence of modalities. This time,
however, the sequence is different for each translator and chosen so that each document
gets translated in all three modalities. This allows us to measure translation productivity
independently from the subject’s productivity and document-specific difficulties.

Table 8.1 shows an example of the adopted modality scheduling. The modality of
document docM; for translator T; in the main task is picked randomly among the two
modalities that were not seen by the same translator for docM;_1, enforcing consecutive

2Warm-up data are excluded from the analysis of Section 8.4.
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Table 8.1 | Modality scheduling overview. For each language, each subject (T;) works
with a pseudo-random sequence of modalities (HT, PE;, PE,). For the warm-up task
(N=5), all translators are provided with the same documents in the same modalities. For
the main task (N=107), each translator is assigned a modality at random. Each document
is translated once for every modality. The same procedure is repeated independently
for all the languages.

documents given to the same translator to be assigned different modalities to avoid
periodicity in repetition and enable same-language comparisons. Importantly, although
all three modes were collected for every document, we did not enforce mode consistency
across the same translator identifier across languages (i.e. T; for Italian does not have
the same sequence of modalities of translator T; in Arabic, for example). For this
reason, individual subjects are not directly comparable across languages. This is relevant
since comparable editing behavior should be attributed to similar personal preferences
rather than an identical modality assignment of the same sentences. Despite modality
scheduling, we have no guarantees that translators consistently follow the order of
documents presented in PET, and thus possibly operate on documents assigned to the
same modality consecutively. However, this possibility reduces to random guessing
due to a lack of any identifying information related to the modality until the document
is entered for editing. The sequence of modalities for the warmup task is fixed and is:
HT, PEs, PE;, HT, PE-.

As productivity and other behavioral metrics can only be estimated with a sizable sample,
we prioritize the number of documents over the number of subjects per language during
budget allocation. In future analyses, a larger set of post-edited documents would also
provide more insight into the error type distribution of NMT systems across different
language pairs.

All subjects are professional translators with at least 3 years of professional experience,
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including at least 1 year of post-editing experience, and strong proficiency in CAT tools.®
Translators were provided with links to the source articles to facilitate contextualization,
were asked to produce translations of publishable quality and were instructed not to use
any external MT engine to produce their translations. Assessing the final quality of the
post-edited material is out of the scope of the current study, although we realize that
this is an important consideration to assess usability in a professional context.*

8.3.2 Choice of Source Texts

The selected documents represent a subset of the FLORES-101 benchmark (Goyal
et al., 2022) consisting of sentences taken from English Wikipedia, and covering a mix
of topics and domains.> While professional translators generally specialize in one or a
few domains, we opt for a mixed-domain dataset to minimize domain adaptation efforts
by the subjects and maximize the generalizability of our results. Importantly, FLORES-
101 includes high-quality human translations into 101 languages, which enables the
automatic estimation of NMT quality and the discarding of excessively low-scoring
models or language pairs before our experiment. FLORES-101 also provides valuable
metadata, e.g. source URL, which allows us to ensure the absence of public translations
of the selected contents, which could be leveraged by translators and compromise the
validity of our setup. The documents used for our study are fragments of contiguous
sentences extracted from Wikipedia articles that compose the original FLORES-101
corpus. Even if small, the context provided by document structure allows us to simulate
a more realistic translation workflow if compared to out-of-context sentences.

Based on our available budget, we selected 112 English documents from the devtest
portion of FLORES-101, corresponding to 450 sentences and 9,626 words. More details
on the data selection process are provided in Section C.1.3.

8.3.3 Choice of Languages

Training data is one of the most important factors in determining the quality of an
NMT system. Unfortunately, using strictly comparable or multi-parallel datasets, such
as Europarl (Koehn, 2005) or the Bible corpus (Mayer and Cysouw, 2014), would dra-
matically restrict the diversity of languages available to our study or imply prohibitively
low translation quality on general-domain text. In order to minimize the effect of

3Additional subjects’ details are available in Section C.1.1.
“A summary of our translation guidelines is provided in Section C.1.2.
5We use a balanced sample of articles sourced from WikiNews, WikiVoyage and WikiBooks.
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Genus:Family dsyn Morphology MSP TTR Script
Enc Indo-European:Germanic - Fusional 1.17 0.28 latin
Ara  Afro-Asiatic:Semitic 0.57 Introflexive | 1.67 0.46 arabic
Nip Indo-European:Germanic  0.49  Fusional 1.16 0.28 latin
Ita  Indo-European:Romance  0.51  Fusional 1.30  0.30 latin
Tur  Altaic: Turkic 0.70 Agglutinative| 2.28°  0.50 latin
Ukr Indo-European:Slavic 0.51  Fusional 1.42 © 0.47 cyrillic

Vie  Austro-Asiatic:VietMuong  0.57  Isolating 1.00 0.12 latin

Table 8.2 | Typological diversity of our language sample. dgyn:  Syn-
tactic distance w.r.t.  English Lin et al. (2019). MSP: Mean size of
paradigm, from Coltekin and Rama (2023). TTR: Type-token ratio measured
on FLORES-101. Shading indicates genetic/syntactic relatedness to English and

morphological complexity/lexical richness.

training data disparity while maximizing language diversity, we choose representa-
tives of six different language families for which comparable amounts of training data
are available in our open-source model, namely Arabic, Dutch, Italian, Turkish,
Ukrainian, and Vietnamese. As shown in Table 8.2, our language sample exhibits a
good diversity in terms of language family, relatedness to English, type of morpholog-
ical system, morphological complexity, measured by the mean size of paradigm (MSP,
Xanthos et al., 2011), and script. We also report the type-token ratio (TTR), the only
language property found to correlate significantly with translation difficulty in a sample
of European languages (Bugliarello et al., 2020). While the amount of language-specific
parallel sentence pairs used for the multilingual fine-tuning of mBART-50 varies widely
(4K < N < 45M), all our selected language pairs fall within the 100K-250K range
(mid-resourced, see Table 8.3), enabling a fair cross-lingual performance comparison.

8.3.4 Choice of MT Systems

While most of the best-performing general-domain NMT systems are commercial, ex-
periments based on such systems are not replicable, as their backends are silently updated
over time. Moreover, without knowing the exact training specifics, we cannot attribute
differences in the cross-lingual results to intrinsic language properties. We balance
these observations by including two NMT systems in our study: Google Translate
(GTrans)® as a representative of commercial quality, and mBART-50 one-to-Many’

®Evaluation performed in October 2021.
7 mbart-large-50-one-to-many


https://huggingface.co/facebook/mbart-large-50-one-to-many
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Google Translate (PE;) | mBART-50 (PE;) # Pairs
ARrA 34.1/65.6/.737 17.0/ 48.5/ .452 226K
NiLp 29.1/60.0/.667 22.6/53.9/.532 226K
Ita 32.8/61.4/.781 24.4/54.7 1 .648 233K
Tur 35.0/65.5/1.00 18.8 /52.7/.755 204K
UkRr 31.1/59.8 /.758 21.9/50.7 /1 .587 104K
ViIE 45.1/61.9/.724 34.7 / 54.0 / .608 127K

Table 8.3 | MT quality of the selected NMT systems for English-to-Target translation
on the full FLORES-101 devtest split, in BLeu / CHRF / CoMET format. Best scores
are highlighted in bold. We report the number of sentence pairs used for mBART-50
multilingual fine-tuning by Tang et al. (2021).

(Tang et al., 2021) as a representative of state-of-the-art open-source multilingual NMT
technology. The original multilingual BART model (Liu et al., 2020) is an encoder-
decoder transformer model pre-trained on monolingual documents in 25 languages.
Tang et al. (2021) extend mBART by further pre-training on 25 new languages and
performing multilingual translation fine-tuning for the full set of 50 languages, producing
three configurations of multilingual NMT models: many-to-one, one-to-many, and
many-to-many. Our choice of mBART-50 is primarily motivated by its manageable
size, good performance across the set of evaluated languages (see Table 8.3), and its adop-
tion for other NMT studies (Liu et al., 2021) and post-editing evaluations (Fomicheva
et al., 2022b). Although mBART-50 performances are usually comparable or slightly
worse than those of tested bilingual NMT models,® using a multilingual model allows
us to evaluate the downstream effectiveness of a single, unified system trained on pairs
evenly distributed across tested languages. Finally, adopting two systems with marked
differences in automatic evaluation scores allows us to estimate how a significant increase
in metrics such as BLEU, ChrF and comeT (Papineni et al., 2002; Popovi¢, 2015; Rei
et al., 2020) impacts downstream productivity across languages in a realistic post-editing
scenario.

8.3.5 Translation Platform and Collected Data

Translators were asked to use PET (Aziz et al., 2012), a computer-assisted translation
tool that supports both translating from scratch and post-editing. This tool was chosen
because (i) it logs information about the post-editing process, which we use to assess

8See Section C.1.4 for automatic MT quality results by five different models over a larger set of 10
target languages.
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effort (see Section 8.4); and (ii) it is a mature research-oriented tool that has been
successfully used in several previous studies (Koponen et al., 2012; Toral et al., 2018b),
and we modify it slightly to support right-to-left languages like Arabic. Using PET,
we collect three types of data:

* Resulting translations produced by translators in either HT or PE modes,
constituting a multilingual corpus with one source text and 18 translations (one
per language-modality combination) exemplified in Table 8.4.

* Behavioral data for translated sentences, including editing time, amount and
type of keystrokes (content, navigation, erase, etc.), and number and duration of
pauses above 300/1000 milliseconds (Lacruz et al., 2014).

* Pre- and post-task questionnaire. The former focuses on demographics, edu-
cation, and work experience with translation and post-editing. The latter elicits
subjective assessments of post-editing quality, effort and enjoyability compared
to translating from scratch.

8.4 Post-Editing Effort Across Languages

In this section, we use the DIVEMT dataset to quantify the post-editing effort of
professional translators across our diverse set of target languages. We consider two main
objective indicators of editing effort: temporal measurements (and related productivity
gains) and post-editing rates, measured by the Human-targeted Translation Edit Rate
(HTER, Snover et al. (2006)). Finally, we assess the subjective perception of PE gains by
examining the post-task questionnaires. We reiterate that all scores in this section are
computed on the same set of source sentences for all languages, resulting in a faithful
cross-lingual comparison of post-editing effort thanks to DIvEMT’s controlled setup.

8.4.1 Temporal Effort and Productivity Gains

We begin by comparing task time (seconds per processed source word) across languages
and modalities. For this purpose, edit times are computed for every document in every
language without considering the presence of multiple translators for every language.
As shown in Figure 8.2, translation time varies considerably across languages even
when no MT system is involved (HT), suggesting an intrinsic variability in translation
complexity for different subjects and language pairs. Indeed, for the HT modality, the
time required for the “slowest” target languages (Italian, Ukrainian) is roughly twice
that of the “fastest” one (Turkish). This pattern cannot be easily explained and contrasts
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Enc Src  Inland waterways can be a good theme to base a holiday around.
Ara HT -Wom las Laad Ui Tl ddstil &1 olel) 055 of (Ko
MT  Js> s LBY Vi Bysge LUl Luadl ol 55 ol (Ke
P Wes dllas clad) 1is UK Lslil LU ol udl (45 w6
Nip HT  Binnenlandse waterwegen kunnen een goed thema zijn voor een vakantie.
MT  Binnenwaterwegen kunnen een goed thema zijn om een vakantie rond te zetten .
PE  Binnenwaterwegen kunnen een goed thema zijn om een vakantie rond te organiseren .
Ita  HT Icorsi d’acqua dell’entroterra possono essere un ottimo punto di partenza da cui orga-
nizzare una vacanza.
MT I corsi d’acqua interni possono essere un buon tema per fondare una vacanza.
PE I corsi d’acqua interni possono essere un buon tema [su cui basare una vacanza.
Tur HT  ig bélgelerdeki su yollari, tatil plant igin iyi bir tema olabilir.
MT i suyollar, tacil igin uygun bir tema olabilir.
PE g sular tatil igin uygun bir tema olabilir.
Ukr HT Moxkna crutamyBaTy BHXIZHI, B3SIBIIN 3a OCHOBY IIOZOPOXK BHYTDIIIHIME BO-
JHUMUA IIJIAXaMMU.
MT Bogsi missxu MOXyTb OyTn XOPOIIHM 006 ’€KTOM s
6a3yBaHHSA BiAIIOYMHKY HABKOJIO .
PE MicuesicTb HABKOJIO BHYTPINIHIX BOJHUX IIJIAXIB MOXKe OyTu
rapHUM BUOOpOM [l opraHisariil BiIIIOYNHKY.
ViE  HT Du lich trén song c6 thé 1a mét lua chon phit hop cho ky nghi.
MT  Céc tuyén nuéc noi dial cé thé 1a mot chit dé t6t dé xay dung mot ki nghi.
PE  Du lich bing dudng thiiy mngi dial 14 mot y tudng nghi duéng khong toi.

Table 8.4 | A DivEMT corpus entry, including the English source (Src), its translation
from scratch (HT), the MT output of mBART-50 (MT) and its post-edited version
(PE) for all languages. We highlight linsertions,, deletions, substitutions and shifts
computed with Tercom Snover et al. (2006). Full examples available in Table C.5.
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with factors commonly tied to MT complexity, such as source-target morphological
richness and language relatedness (Birch et al., 2008; Belinkov et al., 2017). On the
other hand, we find that the relation PE; < PEy < HT (where PE; is the fastest, PEy
has a medium speed, and HT is the slowest) holds for all the evaluated languages.

E From Scratch (HT) E Google Translate (PE1) E mBART-50 (PE2)
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Figure 8.2 | Temporal effort across languages and translation modalities, measured in
seconds per processed source word. Each point represents a document, with higher
scores denoting slower editing. 1: amount of data points per language not shown in

the plot.

For a measure of productivity gains that is easier to interpret and more in line with
translation industry practices, we turn to productivity expressed in source words processed
per minute and compute the speed-up induced by the two post-editing modalities over
translating from scratch (AHT). Table 8.5 presents our results. Across systems, we
find that large differences among automatic MT quality metrics indeed reflect post-
editing effort, suggesting a nuanced picture that complements the findings of Zouhar
et al. (2021b). While post-editing time gains were observed to quickly saturate for
slight changes in high-quality MT, we find that moving from medium-quality to
high-quality MT yields meaningful productivity improvements across most evaluated
languages. Across languages, too, the magnitude of productivity gains ranges widely,
from doubling in some languages (Dutch PE;, Italian PE; and PE,) to only about 10%
(Arabic, Turkish and Ukrainian PE5). When only considering the better-performing
system (PE;), post-editing remains clearly beneficial in all languages despite the high
variability in AHT scores. Results are more nuanced for the open-source system (PE»),
with three out of six languages displaying only marginal gains (<15% in Arabic, Turkish
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Prop 1 AHT 1
HT PE, PE, | PE PE

Ara 13.1 21.7 163 +84%  +10%
Nip 13.6 28.7 21.7 | +119% +61%
Ita 8.8 18.6 15.6 +96%  +95%
Tuor 179 255 21.0 +34%  +12%
Ukr 8.0 123 98 +71%  +14%
Vi 102 13.0 111 +32%  +23%

Table 8.5 | Median productivity (Prop, # processed source words per minute) and
median % post-editing speedup (AHT) for all analyzed languages and modalities.
Arrows denote the direction of improvement.

and Ukrainian). Despite its overall inferior performance, mBART-50 (PE,) is the only
system that enables a fair comparison across languages (in terms of training data size
and architecture, see Section 8.3.4). Interestingly, when focusing on the productivity
gains achieved by this system, factors such as language relatedness and morphological
complexity become relevant. Specifically, Italian (+95%), Dutch (+61%) and Ukrainian
(+14%) are genetically and syntactically related to English, but Ukrainian has a richer
morphology (see Table 8.2). On the other hand, Vietnamese (+23%), Turkish (+12%)
and Arabic (+10%) all belong to different families. However, Vietnamese is isolating
(little to no morphology), while Turkish and Arabic have rich morphological systems
(respectively agglutinative and introflexive, the latter of which is especially problematic
for subword segmentation, Amrhein and Sennrich (2021)). Other differences, however,
are more difficult to explain. For instance, Dutch is closely related to English and has a
simpler morphology than Italian, but its productivity gain with mBART-50 is lower
(61% vs 95%). This finding is accompanied by an important gap in BLEU and comeT
scores achieved by mBART-50 on the two languages (22.6 vs 24.4 BLEU and 0.532 vs
0.648 coMmeT for Dutch vs Italian, resp.), which cannot be explained by training data

size.

In summary, our findings confirm the overall positive impact of NMT post-editing on
translation productivity observed in previous PE studies. However, we note that the
magnitude of this impact is highly variable across systems and languages, with inter-subject
variability also playing an important role, in line with previous studies (Koponen et al.,
2020) (see Section 8.5 for more details). The small size of our language sample does
not allow us to draw direct causal links between specific typological properties and
post-editing efficiency. That said, we believe these results have important implications
for the claimed ‘universality’ of current state-of-the-art MT and NLP systems, primarily
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based on the transformer architecture (Vaswani et al., 2017) and BPE-style subword
segmentation techniques (Sennrich et al., 2016b).

8.4.1.1 Modeling Temporal Effort

Given the high variability among translators, segments and translation modalities, we
assess the validity of our observations via statistical analysis of temporal effort using a
linear mixed-effects regression model (LMER, Lindstrom and Bates (1988)), following
Green et al. (2013) and Toral et al. (2018b). Linear Mixed Effects models (LMER)
are used for regression analyses involving dependent data, such as longitudinal studies
with multiple observations per subject. We fit our model on n = 7434 instances,
corresponding to 413 sentences translated by 18 translators, using translation time as
the dependent variable, and translation modality, target language, their interaction and
length of source segment in characters as fixed predictors:

edit_time ~ src_len_chr + lang_id * task_type +
(1|subject_id) +

(1 | document_id/item_id) +

(0 + task_type | document_id/item_id)

We log-transform the dependent variable, edit time in seconds, given its long right tail.
The models are built by adding one element at a time and checking whether such an
addition leads to a significantly better model, as indicated by a reduction in AIC (i.e.,
a decrease of at least 2). Our random effects structure includes random intercepts for
different segments (nested with documents) and translators, as well as a random slope
for modality over individual segments. We start with an initial model that includes only
the two random intercepts (by-translator and by-segment) and proceed by (i) finding
significance for nested document/segment random effect; (ii) adding fixed predictors
one by one; (iii) adding interactions between fixed predictors; and (iv) adding the
random slopes.”

Table 8.6 presents the set of predictors included in the final model, along with an
estimate of their impact on edit times and their corresponding significance. We find that
both PE modalities significantly reduce translation times (p < 0.001), with PE; being

9The document processing order was originally included to identify possible longitudinal effects
but was removed due to a lack of significant improvements.
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Predictor Estim. p-value Sig.
(intercept) 492 1.12e-11 o
source length 0.38 < 2e-16 o
lang_ara -0.49 0.1209

lang_ita -0.14 0.6407

lang_nld -0.58 0.0733 X
lang_tur -0.82 0.0162 *
lang_vie -0.24 0.4254

task_pel -0.49 < 2e-16 e
task_pe2 -0.22  1.77e-07 o
lang_ara:task_pel -0.11 0.0505 X
lang_ita:task_pel -0.40 8.97e-12 i
lang_nld:task_pel -0.41  5.74e-12 o
lang_tur:task_pel -0.14 0.0194 *
lang_vie:task_pel 0.13 0.0290 *
lang_ara:task_pe2 0.05 0.3535

lang_ita:task_pe2 -0.39  3.30e-11 o
lang_nld:task_pe2 -0.29  4.46e-07 i
lang_tur:task_pe2 0.03 0.5811

lang_vie:task_pe2 0.04 0.5289

Table 8.6 | LMER modeling results using translation time as the dependent variable.
The reference levels for predictors lang and task are Ukrainian and Translation from
scratch (HT), respectively. Estimate impact on edit time for every predictor is provided
in log seconds. Significance: ** = < 0.001, * = < 0.05,x = < 0.1

significantly faster than PE (p < 0.001) across all languages. Considering Ukrainian—
the language for which HT is slowest—as the reference level, the reduction in time
brought by Google is significantly more pronounced for Italian, Dutch (p < 0.001),
and Turkish (p < 0.05). For mBART-50, however, we only observe significantly more
pronounced increases in productivity for Italian and Dutch (p < 0.001) compared to
the reference. We find these results to corroborate the observations of the previous
section.

8.4.2 Post-Editing Rate

We proceed to study the post-editing patterns using the widely adopted Human-
targeted Translation Edit Rate (HTER, Snover et al. (2006)), which is computed as
the length-normalized sum of word-level substitutions, insertions, deletions, and shift
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operations performed during post-editing.

As shown in Figure 8.3, PE; required less editing than PE, for all languages, and a high
variability is observed across the two systems and all languages. Because translators
were not informed about the presence of two MT systems, we exclude the possibility
that these results reflect an over-reliance or distrust towards a specific MT system. For
Google Translate, Ukrainian shows the heaviest edit rate, followed by Vietnamese,
whereas Arabic, Dutch, Italian and Turkish all show relatively low amounts of edits.
Focusing again on mBART-50 for a more fair cross-lingual comparison, Ukrainian is
by far the most heavily edited language, followed by a medium-tier group composed of
Vietnamese, Arabic and Turkish, and finally by Dutch and Italian as low-edit languages.
Results show that several of our observations on linguistic relatedness and morphology
type also apply to edit rates, with languages less related to English or having richer
morphology requiring more post-edits on average.

Figure 8.4 visualizes the large gap in edit rates across languages and subjects by pre-
senting the amount of ‘errorless” MT sentences that were accepted directly, i.e. without
any post-editing. We note again how the NMT system significantly influences the rate
of occurrence of such sentences, yet nonetheless shows that Dutch and Italian generally
present more error-free sentences than Ukrainian and Vietnamese. In particular, for
Google Translate outputs, the average rate of error-free sentences is roughly 25%
for the former target languages, while for the latter, it accounts for only 3% of total
translations. Surprisingly, the English-Turkish pair also fares well, despite the low
relatedness between the source and target languages. We note that post-editing effort
appears to correlate poorly with the automatic MT quality metrics reported in Table 8.3
(e.g., see the high scores of Vietnamese and the low scores of Dutch PE;), highlighting
a difficulty in predicting the benefits of MT post-editing over HT for new language
pairs.

While HTER is a standard metric adopted in both academic and industrial settings,
we also evaluated its character-level variant, CharacTER (Wang et al., 2016), to assess
whether it could better account for the editing process of morphologically rich lan-
guages. Figure 8.5 presents the CharacTER results. When comparing this plot to the
HTER one (Figure 8.3), we notice that CharacTER preserves the overall trends but
slightly improves the edit rate for Arabic and Turkish compared to other languages.
Nevertheless, we find that HTER correlates slightly better with productivity scores
across all tested languages, both at the sentence and document levels.
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Figure 8.3 | Human-targeted Translation Edit Rate (HTER) for Google Translate and
mBART-50 post-editing across available languages.
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Figure 8.4 | Distribution of error-less machine translation sentence outputs (no edits
performed during post-editing) for each translator and every language.

8.4.3 Perception of Productivity Gain

We conclude our analysis by examining the post-task questionnaires, in which par-
ticipants expressed their perceptions of MT quality and translation speed across HT
and PE modalities (HT,, PE,)'” using a 1-7 Likert scale (where 1 is the slowest and
7 is the fastest). We use these to compute the Perceived Productivity Gain (PPG) as
PPG = PE, — HT, and visualize it in Figure 8.6. We observe that Italian and Dutch,

10We reemphasize that subjects were unaware of the presence of two distinct MT systems.
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Figure 8.5 | Character-level Human-targeted Translation Edit Rate (CharacTER) for
Google Translate and mBART-50 post-editing across available languages.
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Figure 8.6 | Perceived productivity gains (PPG) between the HT and PE translation
modalities, assessed for all subjects after task completion.

the only target languages with marked productivity gains (AHT) regardless of the PE
system in Table 8.5, are also the only ones having consistently high (> 2) PPG scores
across all subjects. Moreover, we remark how PPG for target languages with a wide
gap in AHT scores between high-PE; and low-PE; (Arabic, Ukrainian) are hardly
distinguishable from those of languages in which AHT is low for both PE systems
(Turkish, Vietnamese). Notably, 4 out of 18 subjects attribute negative PPGs to the PE
modality, despite productivity gains being reported across all subjects and languages.
These results suggest that worst-case usage scenarios may play an important role in
driving PPG, i.e. that subjects’ perception of quality is shaped mainly by particularly challeng-
ing or unsatisfying interactions with the NMT system, rather than the average case. Finally,
from the post-task questionnaire, PPG scores exhibit a strong positive correlation with
the perception of MT adequacy (p=0.66), fluency (p=0.46) and overall quality (p=0.69),
and more generally with a higher enjoyability of PE (p=0.60), while being inversely
correlated with the perception of problematic mistranslations (p=-0.60).
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8.5 Limitations

The subjective component introduced by the presence of multiple translators is an
important confounding factor in our setup, particularly given the relatively small
number of subjects for each language. In our study, we aimed to strike a balance
between thorough control of other noise components and faithful reproduction of
a realistic translation scenario. However, we recognize that the combination of the
limited document context provided by FLORES-101, the variety of topics covered in
the texts, and the experimental nature of the PET platform constitutes an atypical setting
that may have impacted the translators’ natural productivity. Moreover, variability in
the content of mBART-50 fine-tuning data, despite their comparable sizes, may have
played a role in the observed variability in automatic MT evaluation and PE gains across
languages.

8.6 Conclusions

We introduced DIvEMT, the outcome of a post-editing study that spanned two state-
of-the-art NMT systems, involved 18 professional translators, and employed six ty-
pologically diverse target languages under a unified setup. We leveraged DIvEMT’s
behavioral data to perform a controlled cross-language analysis of NMT post-editing
effort along its temporal and editing effort dimensions. The analysis reveals that NMT
drives significant improvements in productivity across all evaluated languages; however,
the magnitude of these improvements depends heavily on the language and the under-
lying NMT system. In this setting, productivity measurements across modalities were
found to be generally consistent with the recorded editing patterns. Our results indicate
that translators working on language pairs with significant post-editing productivity
gains, on average, perform fewer edits and accept more machine-generated translations
without any editing. We have also observed a disconnect between post-editing pro-
ductivity gains and MT quality metrics collected for the same NMT systems. Finally,
low source-language relatedness and target morphological complexity seem to hinder
productivity when NMT is adopted, even in settings where system architecture and
training data are controlled for.

In our qualitative analysis, translators’ perception of post-editing usefulness was found
to be strongly shaped by problematic mistranslations. Languages showing large pro-
ductivity gains for both NMT systems were the only ones associated with a positive
perception of PE-mediated gains, as opposed to mixed or negative opinions for other
translation directions.



8.6. Conclusions 157

Overall, our findings reveal significant variation in post-editing effectiveness across
languages and systems, highlighting the need for fine-grained quality assessment tools.
In the next chapter, we build upon these insights by conducting a second study with
professional post-editors, assessing the impact of word-level error detection methods—
including unsupervised approaches that leverage model internals—on the quality and
productivity of human post-editing.






CHAPTER 9

Word-level Quality Estimation for
Machine Translation Post-editing

Chapter Summary

Building upon the user study of the previous chapter, we investigate the impact
of word-level quality estimation methods, including the use of model predictive
probabilities for uncertainty estimation, on machine translation post-editing.
This chapter presents our QE4PE study, involving 42 professional post-editors
across two translation directions and four error-span highlight modalities for
identifying potential errors in the outputs of a state-of-the-art neural MT model.
Post-editing effort and productivity are measured through behavioral logging
techniques, while quality improvements are assessed through systematic human
annotation. Results reveal that domain, language, and editors’ speed are critical
factors in determining the effectiveness of highlights, with modest differences
between human-made and automated highlights underscoring a gap between
accuracy and usability in professional workflows.

This chapter is adapted from the paper QE4PE: Word-level Quality Estimation for
Human Post-Editing (Sarti et al., 2025b).

Thar’s just what translation is, I think. That’s all speaking is. Listening to the
other and trying to see past your own biases to glimpse what they’re trying to say.
Showing yourself to the world, and hoping someone else understands.

— Rebecca F. Kuang, Babel (2022)

159
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9.1 Introduction

Recent years saw a steady increase in the quality of machine translation systems and their
widespread adoption in professional translation workflows (Kocmi et al., 2024a). Still,
human post-editing of MT outputs remains a fundamental step to ensure high-quality
translations, particularly for challenging textual domains requiring native fluency and
specialized terminology (Liu et al., 2024). Quality estimation (QE) techniques were
introduced to reduce post-editing effort by automatically identifying problematic MT
outputs without the need for human-written reference translations and were quickly
integrated into industry platforms (Tamchyna, 2021).

Segment-level QE models correlate well with human perception of quality (Freitag et al.,
2024) and exceed the performance of reference-based metrics in specific settings (Rei
et al., 2021; Amrhein et al., 2022, 2023). On the other hand, word-level QE methods
for identifying error spans requiring revision have received less attention in the past
due to their modest agreement with human annotations, despite their promise for
more granular and interpretable quality assessment in line with modern MT practices
(Zerva et al., 2024). In particular, while the accuracy of these approaches is regularly
assessed in evaluation campaigns, research has rarely focused on assessing the impact of
such techniques in realistic post-editing workflows, with notable exceptions suggesting
limited benefits (Shenoy et al., 2021; Eo et al., 2022). This hinders current QE evaluation
practices: by foregoing experimental evaluation with human editors, it is implicitly
assumed that word-level QE will become helpful once sufhicient accuracy is achieved,
without accounting for the additional challenges associated with successfully integrating
these methods into post-editing workflows.

In this chapter, we present a study, which we dub QE4PE (Quality Estimation for Post
Editing), addressing this gap through a large-scale study with 42 professional translators
for the English—Italian and English—Dutch directions to measure the impact of word-
level QE on editing quality, productivity and usability. We aim for a realistic and
reproducible setup, employing the high-quality open-source NLLB 3.3B MT model
(NLLB Team et al., 2024) to translate challenging documents from biomedical and social
media domains. We then conduct a controlled evaluation of post-editing with error
spans in four highlight modalities, i.e. using highlights derived from four word-level QE
methods: a supervised state-of-the-art QE model trained on human error annotations
(xcoMET, Guerreiro et al., 2024), an method leveraging the uncertainty
of the MT model during generation, oracle error spans obtained from the consensus of
previous human post-editors, and a no highlight baseline. The human post-editing is
performed using GROTE, a simple online interface we built to support the real-time



9.1. Introduction 161

source eng translation
6@ —Nita&nld
@9 |
hlghllght SUPerwsed oracle

J

ed|t|ng edltlng ed|t|ng ed|t|ng
‘o rA Q r

post-edited translations

v v

] productivity & effort MQM annotation
— editing choices ESA rating
L) ‘i‘ usability automated metrics

process evaluation quality assessment

Figure 9.1 | A summary of the QE4PE study. Documents are translated by a neural
MT model and reviewed by professional editors across two translation directions and
four highlight modalities. Editing effort, productivity and usability across modalities are
estimated from editing logs and questionnaires. Finally, the quality of MT and edited
outputs is assessed with MQM/ESA human annotations and automatic metrics.

logging of granular editing data, enabling a quantitative assessment of editing effort and
productivity across highlight modalities. We also survey professionals using an online
questionnaire to collect qualitative feedback about the usability and quality of the MT
model, as well as the interface and error span highlights. Finally, a subset of the original
MT outputs and their post-edited variants is annotated following the MQM and ESA
protocols (Lommel et al., 2013; Kocmi et al., 2024b) to verify quality improvements
after post-editing. See Figure 9.1 for an overview of the study. Most similar to our
study, Shenoy et al. (2021) investigated the effect of synthetic word-level QE highlights
for English—German post-editing on Wikipedia data, concluding that word-level QE
accuracy was at the time still insufficient to produce tangible productivity benefits in
human editing workflows. We expand the scope of such evaluation by including two
translation directions, two challenging real-world text domains and state-of-the-art
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MT and QE systems and methods. In summary, our work represents a step towards
evaluating translation technologies and methods that leverage model internals, centered
on users’ experience (Guerberof-Arenas and Moorkens, 2023; Savoldi et al., 2025).

We release all data, code and the GROTE editing interface to foster future studies on
the usability of error span highlighting techniques for other word-level QE methods

and translation directions.!

9.2 Experimental Setup

9.2.1 Structure of the Study

Our study is organized in five stages:

1) Oracle Post-editing  As a preliminary step, segments later used in the main
assessment are post-edited by three professionals per direction using their preferred
interface without logging. This allows us to obtain post-edits and produce oracle word-
level spans based on the editing consensus of multiple human professionals. Translators
involved in this stage are not involved further in the study.

2) Pretask (Pre)  The pretask allows the core translators (12 per language direction,
see Section 9.2.4) to familiarize themselves with the GRoTE interface and text highlights.
Before starting, all translators complete a questionnaire to provide demographic and
professional information about their profile (Table 9.9). In the pretask, all translators
work in an identical setup, post-editing a small set of documents similar to those of the
main task with Oracle highlights. We assign core translators into three groups based on
their speed, as determined by their editing logs (4 translators per group for faster, average
and slower groups in each direction). Individuals from each group are then randomly
assigned to each highlight modality to ensure an equal representation of editing speeds,
resulting in 1 faster, 1 average, and 1 slower translator for each highlight modality. This
procedure is repeated independently for both translation directions.

3) Main Task (Main) This task, conducted in the two weeks following the pretask,
covers the majority of the collected data and is the main object of study for the analyses
of Section 9.3. In the main task, 24 core translators work on the same texts using the
GRrOTE interface, with three translators per modality in each translation direction, as
shown in Figure 9.1. After the main task, translators complete a questionnaire on the

Dataset: gsarti/qedpe; Interface: gsarti/grote; Code: https://github.com/gsarti/
qe4dpe


https://huggingface.co/datasets/gsarti/qe4pe
https://huggingface.co/spaces/gsarti/grote
https://github.com/gsarti/qe4pe
https://github.com/gsarti/qe4pe
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quality and usability of the MT outputs, the interface and, where applicable, word
highlights.?

4) Post-Task (Post)  After MaIN, the 12 core translators per direction are asked to
post-edit an additional small set of related documents with GRoTE, but this time working
all with the No Highlight modality. This step lets us obtain baseline editing patterns for
each translator, allowing us to estimate individual speed and editing differences across
highlight modalities without the confounding effect of interface proficiency accounted
for in the Pre stage.

5) Quality Assessment (QA)  Finally, a subset consisting of 148 main task segments
is randomly selected for manual annotation by six new translators per direction (see
Section 9.2.4). For each segment, the original MT output and all its post-edited versions
are annotated with MQM error spans, including minor/major error severity and a
subset of MQM error categories, including e.g., mistranslations, omissions, and stylistic
errors (Lommel et al., 2013). Table 9.1 presents our annotation guidelines.> Moreover,
the annotator proposes corrections for each error span, ultimately providing a 0-100
quality score, which matches the common DA scoring adopted in multiple WMT
campaigns. We adopt this scoring system, which closely adheres to the ESA evaluation
protocol (Kocmi et al., 2024b), following recent results showing its effectiveness and
efficiency for ranking MT systems.

In summary, for each translation direction, we collect three full sets of oracle post-edits,
12 full sets of edits with behavioral logs for prE, MaIN and posT task data, and 13 subsets
of main task data (12 post-edits, plus the original MT output) annotated with MQM
error spans, corrections and segment-level ESA ratings. Moreover, we also collect 12
pre- and post-task questionnaire responses from core set translators to obtain a qualitative
view of the editing process.

9.2.2 Highlight Modalities

We conduct our study on four highlight modalities across two severity levels (minor
and major errors). Using multiple severity levels aligns with current MT evaluation
practices (Freitag et al., 2021a, 2024), as well as previous results indicating that users
tend to prefer more granular and informative word-level highlights (Shenoy et al.,
2021; Vasconcelos et al., 2025). The highlight modalities we employ are:

2We do not disclose the highlight modality to translators to avoid biasing their judgment in the
evaluation.
3See Table C.15 for annotation examples.
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Error category

Subcategory Description

Accuracy

Incorrect meaning has been

transferred to the source text.

Addition Translation includes the information that is not present in the
source and it changes or distorts the original message.

Omission Translation is missing the information that is present in the
source, which is important to convey the message.

Mistranslation Translation does not accurately represent the source content
meaning.
Inconsistency There are internal inconsistencies in the translation (for ex-

ample, using different verb forms in the bullet list or in CTAs,
calling the same UI element differently, terminology used in-
consistently etc).

Linguistic

Ofhcial linguistic reference

Untranslated Content that should have been translated has been left untrans-
lated.
Punctuation Punctuation is used incorrectly (for the locale or style), includ-

ing missing or extra white spaces and the incorrect use of space
(non-breaking space). Violation of typographic conventions of

sources such as grammar che locale
books.
Spelling Issues related to spelling of words, including typos, wrong
word hyphenation, word breaks and capitalization.
Grammar Issues related to the grammar or syntax of the text, other than
spelling.
Style Inconsistent Style Style is inconsistent within a text.
Not suitable/native; too lit- Readability Translation does not read well (due to heavy sentence structure,
eral or awkward. frequent repetitions, unidiomatic).

Wrong Register  Inappropriate style for the specific subject field, the level of
formality, and the mode of discourse (e.g., written text versus
transcribed speech).

Severity level

Description

Major

Minor

Neutral

The Severity Level of an error that seriously affects the understandability, reliability, or usability of
the content for its intended purpose or hinders the proper use of the product or service due to a
significant loss or change in meaning or because the error appears in a highly visible or important
part of the content.

The Severitfy Level of an error that does not seriously impede the usability, understandability, or
reliability of the content for its intended purpose, but has a limited impact on, for example, accuracy,
stylistic quality, consistency, fluency, clarity, or general appeal of the content.

The Severity Level of an error that differs from a quality evaluator’s preferential translation or that
is flagged for the translator’s attention but is an acceptable translation.

Table 9.1 | Annotation instructions for our MQM-inspired error taxonomy.
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No Highlight The text is presented as-is, without any highlighted spans. This
setting serves as a baseline to estimate the default post-editing quality and productivity
using our interface.

Oracle  Following the Oracle Post-editing phase, we produce oracle error spans
from the editing consensus of human post-editors. We label text spans that were edited
by two of the three translators as minor, and those edited by all three translators as
major, following the intuition that more critical errors are more likely to be identified
by several annotators, while minor changes will show more variance across subjects.
This modality serves as a best-case scenario, providing an upper bound for future
improvements in word-level QE quality.

Supervised  In this setting, word-level error spans are obtained using XxCOMET-XXL
(Guerreiro et al., 2024), which is a multilingual transformer encoder (Goyal et al., 2021)
further trained for joint word- and sentence-level QE prediction. We select xcoMET-
xxt in light of its broad adoption, open accessibility and state-of-the-art performance
in QE across several translation directions (Zerva et al., 2024). For the severity levels,
we use the labels predicted by the model, mapping critical labels to the major level.

Unsupervised In this modality, we exploit the access to the MT model producing the
original translations to obtain uncertainty-based highlights. As a preliminary evaluation to
select a capable unsupervised word-level QE method, we evaluate two unsupervised
QE methods employing token log-probabilities assigned by MT model to predict
human post-edits: raw negative log-probabilities (Locpross), corresponding to the
surprisal assigned by the MT model to every generated token, and their variance for
Gal and Ghahramani, 2016). We
employ surprisal-based metrics, following previous work that shows their effectiveness

10 steps of Monte Carlo Dropout (LOGPROBS ¢4 vars
in predicting translation errors (Fomicheva and Specia, 2019) and human editing time
(Lim et al., 2024). We collect scores for the English—Italian and English—Dutch
directions of QE4PE Oracle post-edits and our DIVEMT dataset (Sarti et al., 2022) to
identify the best-performing method, using metric scores extracted from the original
models used for translation to predict human post-edits. We use average precision (AP)
as a threshold-agnostic performance metric for the tested continuous methods. Oracle
highlights obtained from the consensus of three annotators in the first stage of the
study are used as reference for QE4PE, while a single set of post-edits is available for
DivEMT. The xcomeT-xxL model used for Supervised highlights, and the average
agreement of individual Oracle editors with the consensus label are also included for
comparison.
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DivEMT QE4PE
Method | Enslt  En—Nl  En—lt En—NI
| AP AU AP AU | AP AU AP AU
Loceross (Fomicheva et al., 2020) 0.18 0.18 0.19 0.19]0.10 0.09 0.09 0.09
LOGPROBS wep var (Fomicheva et al., 2020, )| 0.41 0.41 042 0.42[023 0.23 031 0.31
XCOMET-XXL (Guerreiro et al., 2024, Sup.) | |0.16 0.23 0.19 0.28
AvG. Oracle SINGLE TRANSLATOR ‘ - - - - ‘0.53 0.73 0.55 0.75

Table 9.2 | Average Precision (AP) and Area Under the Precision-Recall Curve (AU)
between metrics and error spans derived from human post-editing. We use mBART 1-
to-50 and NLLB 3B respectively for DivEMT and QE4PE. For DivEMT, a single post-
editor is available for computing the agreement, while for QE4PE we use consensus-
based Oracte highlights. For QE4PE, we report the average agreement between
individual oracle post-editors and their consensus as an agreement upper bound.

Results in Table 9.2 show a strong performance for the LOGPROBS ;4 o method, even
surpassing the accuracy of the supervised xcomeT model across both datasets.* Hence,
we select it for the highlight modality, setting value thresholds for minor/-
major errors to match the respective highlighted word proportions in the Supervised
modality to ensure a fair comparison of their effectiveness in the post-editing task.

9.2.3 Data and MT model

MT Model  On the one hand, the MT model must achieve high translation quality
in the selected languages to ensure our experimental setup applies to state-of-the-art
proprietary systems. Still, the MT model should be open-source and have a manageable
size to ensure reproducible findings and enable the computation of uncertainty for the
unsupervised setting. All considered, we use NLLB 3.3B (NLLB Team et al., 2024), a
widely used MT model achieving industry-level performances across 200 languages
(Moslem et al., 2023).

Data selection ~ We begin by selecting two translation directions, English—Italian
and English—Dutch, according to the availability of professional translators from our
industrial partners. We intentionally focus on out-of-English translations as they are
generally more challenging for modern MT models (Kocmi et al., 2023). We aim to
identify documents that are manageable for professional translators without domain-
specific expertise but still prove challenging for our MT model to ensure a sufficient

“Highlights are extended from tokens to words to match the granularity of other modalities.
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Task Domain #Docs #Seg. # Words

Pr Social 4 23 539
® Biomed. 2 15 348
MAIN Social 30 160 3375
Biomed. 21 165 3384

Post Social 6 34 841
Biomed. 2 16 257
Total 64 413 8744

Table 9.3 | Statistics for QE4PE data.

amount of error spans across modalities. Since original references for our selected
translation direction were not available, we do not have a direct mean to compare MT
quality in the two languages. However, according to our human MQM assessment in
Section 9.3.3 (Table 9.7), NLLB produces a comparable amount of errors across Dutch
and Italian translations, suggesting similar quality.

We begin by translating 3,672 multi-segment English documents from the WMT23
General and Biomedical MT shared tasks (Kocmi et al., 2023; Neves et al., 2023) and MT
test suites to Dutch and Italian. Our choice for these specialized domains, as opposed to
e.g. generic news articles, is driven by the real-world needs of the translation industry
for domain-specific post-editing support (Eschbach-Dymanus et al., 2024; Li et al.,
2025). Moreover, focusing on domains that are considerably more challenging for
MT systems than news, as shown by recent WMT campaigns (Neves et al., 2024),
ensures a sufficient amount of MT errors to support a sound comparison of word-level
QE methods. Then, xcomeT-xXL is used to produce a first set of segment-level QE
scores and word-level error spans for all segments. To make the study tractable, we
further narrow down the selection of documents according to several heuristics to
ensure a realistic editing experience and a balanced occurrence of error spans (details in
Section C.2.1). This procedure yields 351 documents, from which we manually select a
subset of 64 documents (413 segments, 8,744 source words per post-editor) across two
domains:

* Social media posts, including Mastodon posts from the WMT23 General Task
(Kocmi et al., 2023) English<»German evaluation and Reddit comments from
the Robustness Challenge Set for Machine Translation (RoCS-MT, Bawden and
Sagot, 2023), displaying atypical language use, such as slang or acronymization.

* Biomedical abstracts extracted from PubMed from the WMT23 Biomedical
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Source gy So why is it that people jump through extra hoops to install Google Maps?

No High.  Quindi perché le persone devono fare un salto in pitt per installare Google Maps?

Oracle perché le persone devono fare un salto in pit per installare Google Maps?
Sup. le persone devono fare un salto in piti per installare Google Maps?
Quindi perché le persone devono un salto in pitt per installare Google Maps?

PEno High.  Quindi perché le persone devono fare un in piu per installare Google Maps?
PEo,acle perché le persone un in piu per installare Google Maps?
PEsp. Quindi perché le persone in pitt per installare Google Maps?
PE Quindi perché le persone per installare Google Maps?

Table 9.4 | ex—1T example from the QE4PE dataset, showing /major word

highlights and a single post-edit per modality, with modified words

Remove negation (13-6)

English  No significant differences were found with [...]
Dutch Er werden geen significante verschillen — significante verschillen gevonden met [...]

Title literal translation (16-3)

English  The Last of Us is an easy and canonical example of dad-ification. [...]
Italian The Last of Us — L'ultimo di noi & un esempio facile e canonico di dad-ification. [...]

Wrong term (48-5)

English  [...],, except for alkaline phosphatase.

Italian [...], ad eccezione della fosfatasi alcalina — chinasi proteica.

Table 9.5 | Examples of original — manually inserted critical errors with document-
segment ID from Table 9.8.

Translation Task (Neves et al., 2023), including domain-specific terminology.

Table 9.3 present statistics for the PRe, MaIN and PosT editing stages, and Table 9.4
shows an example of highlights and edits. While including multiple domains in the
same task can render our post-editing setup less realistic, we deem it essential to test the
cross-domain validity of our findings.

Critical Errors  Before producing highlights, we manually introduce 13 critical errors
into main task segments to assess post-editing thoroughness. Errors are produced, for
example, by negating statements, inverting the polarity of adjectives, inverting numbers,
and corrupting acronyms. We replicate the errors in both translation directions to
enable direct comparison. Most of these errors were correctly identified across all three
highlight modalities. Table 9.5 presents some examples of critical errors in the dataset.
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9.2.4 Participants

For both directions, the professional translation companies Translated and Global
Textware recruited three translators for the Oracle post-editing stage, the core set
of 12 translators working on Pre, MaIN and PosT tasks, and six more translators for the
QA stage, for a total of 21 translators per direction. All translators were freelancers with
native proficiency in their target language and self-assessed proficiency of at least C1
in English. Almost all translators had more than two years of professional translation
experience and regularly post-edited MT outputs (details in Table 9.9).

9.2.5 Editing Interface

We develop a custom interface, which we name Groningen Translation Environment
(GrOTE, Figure 9.2), to support editing over texts with word-level highlights. While
the MMPE tool used by Shenoy et al. (2021) provide extensive multimodal functionali-
ties (Herbig et al., 2020), we aim for a bare-bones setup to avoid confounders in the
evaluation. GROTE is a web interface based on Gradio (Abid et al., 2019) and hosted on
the Hugging Face Spaces to enable multi-user data collection online. Upon loading a
document, source texts and MT outputs for all segments are presented in two columns,
following standard industry practices. For modalities with highlights, the interface
provides an informative message and supports removing all highlights from a segment
via a button, with highlights on words disappearing automatically upon editing, as in
(Shenoy et al., 2021). The interface supports real-time logging of user actions, allowing
for the analysis of the editing process. In particular, we log the start and end times
for each edited document, the accessing and exiting of segment textboxes, highlight
removals, and individual keystrokes during editing.

GroTE intentionally lacks standard features such as translation memories, glossaries,
and spellchecking to ensure equal familiarity among translators, ultimately controlling
for editor proficiency with these tools, as done in previous studies (Shenoy et al., 2021;
Sarti et al., 2022). While most translators noted the lack of advanced features in our

usability assessment, the majority also found the interface easy to set up, access, and use
(Table 9.9).


https://translated.com
https://www.globaltextware.nl/
https://www.globaltextware.nl/
https://hf.co/spaces

170 9. Word-level Quality Estimation for Machine Translation Post-editing

o
LA GROTE Translations

. GRONINGEN TRANSLATION with potential issues
ENVIRONMENT
These are pre-translated sentences
that might require editing. Use the
Source sentences green checkmark to remove highlights
if needed.
These are the original sentences

you need to translate Potential issue severity:

Minor Major

There is limited research regarding Esistono limitate ricerche
the continuity, stability, and role of riguardanti la continuita, la stabilita e
country of origin. il ruolo del paese di origine.

Questo studio longitudinale
prospettico ha esaminato i modelli
di continuita a livello medio e la
stabilita delle differenze individuali
di selezionate scale di
temperamento a 6 e 12 mesi in
neonati pretermine.

This prospective longitudinal
study examined patterns of
mean-level continuity and
individual-differences stability of
select scales of temperament at 6
and 12 months in preterm infants.

Figure 9.2 | An example of the QE4PE GRrOTE setup for two segments in an
English—Italian document.

9.3 Analysis

9.3.1 Productivity

We obtain segment- and document-level edit times and compute editing productivity as
the number of processed source characters divided by the sum of all document-level
edit times, measured in characters per minute. To account for potential breaks taken by
post-editors during editing, we filter out pauses between logged actions longer than 5
minutes. We note that this procedure does not significantly impact the overall ranking
of translators, while ensuring a more robust evaluation of editing time.

Do Highlights Make Post-editors Faster?  Figure 9.3 shows translators’ productiv-
ity across stages, with every dot corresponding to the productivity of a single individual.
We observe that no highlight modality consistently leads to faster editing across all speed
groups and that the ordering of Pre-task speed groups is maintained in the following
stages despite the different highlight modalities. These results suggest that individ-
ual variability in editing speed is more critical than highlight modality in predicting
editing speed. However, the fastest English—Dutch translators achieved outstanding
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Figure 9.3 | Productivity of post-editors across QE4PE stages (PrRe, MaIN, Post). The
- marks entries with speed > 300 characters per minute and X marks missing data.
Each row corresponds to the same three translators across all stages.

productivity, i.e. > 2 standard deviations above the overall mean (entries with > 300
char/min, = in Figure 9.3) almost exclusively in No Highlight, and, Oracle modalities,
suggesting that lower-quality highlights hinder editing speed.

We validate these observations by fitting a negative binomial mixed-effect model on
segment-level editing times (model details in Table C.10). Excluding random factors
such as translator and segment identity from the model results in a significant drop
in explained variance, confirming the inherent variability of editing times (R? =
0.93 — 0.41). Model coefhcients indicate that the output length of MT and the
proportion of highlighted characters are the primary factors driving an increase in
editing times, possibly reflecting an increase in cognitive effort required to process
additional information. We find that highlights have a significant impact on increasing
the editing speed of English—Italian translators (p < 0.001), but a minimal impact for
English—Dutch. Comparing the productivity of the same translator editing with and
without highlights (MaIN vs Post), two-thirds of the translators editing with highlights
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were up to two times slower on biomedical texts. However, the same proportion of
translators was up to three times faster on social media texts across both directions.

In summary, we find that highlight modalities are not predictive of edit times on
their own, but translation direction and domain play an important role in determining
the effect of highlights on editing productivity. We attribute these results to two main
factors, which will remain central in the analysis of the following sections: (1) the
different propensity of translators to act upon highlighted issues in the two tested directions,
and (2) the different nature of errors highlighted across domains.

9.3.2 Highlights and Edits

We then examine how highlights are distributed across modalities and how they influ-
ence the editing choices of human post-editors.

Agreement Across Modalities  First, we quantify how different modalities agree
in terms of highlights’ distribution and editing. We find that highlight overlaps across
modalities range from 15% to 39% when comparing highlight modalities in a pairwise
fashion, with the highest overlap for English—Italian social media and English—Dutch
biomedical texts.> Despite the relatively low agreement on highlights, we find an
average agreement of 73% for post-edited characters across modalities. This suggests
that edits are generally uniform regardless of highlight modalities and are not necessarily
restricted to highlighted spans.

Do Highlights Accurately Identify Potential Issues?  Table 9.6 (Base Freq.) shows
raw highlight and edit frequencies across modalities. We observe different trends across
the two language pairs: for English—Italian, post-editors working with highlights
edit more than twice as much as those working with No Highlight, regardless of the
highlight modality. On the contrary, for English—Dutch they edit 33% less in the
same setting. These results suggest a different attitude towards acting upon highlighted
potential issues across the two translation directions, with English—Italian translators
appearing to be more inclined to perform more edits when highlights are present. We
introduce four metrics to quantify highlights-edits overlap:

* P(E|H) and P(H|E), reflecting highlights’ precision and recall in predicting edits,
respectively.

5Scores are normalized to account for highlight frequencies across modalities. Agreement is shown
in Table C.12.
®Editing agreement is shown in Figure C.6.
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Base Freq. Measured Projected
P(H) P(E)|P(E|H) Ap P(H|E) Ay |P(E|H) AKp P(H|E) Ky
English—Italian
NoHigh. - 005 | - - - - - - - -
Random  0.16 - - - - - 0.06 1.20 0.18 1.20

Oracle 0.15  0.12 0.37 4.62 045 4.1 [0.18;5> 6.004; 4 0.5540.1 4.2310.1
0.16  0.13 025 227 021 22 |0119.1 275405 037402 247403

Sup. 0.12  0.16 0.28 2.00 022 2.0 01401 350415 0.3510.1 3.1841.0
English—Dutch

No High. - 0.14 - - - - - - - -

Random 0.17 - - - - - 0.16 1.14 0.19 1.19

Oracle 0.20 0.10 0.26 4.33 0.53 3.12 0.287[).() 2'55$1-8 0.40“]4 1 2.35“].3
0.20 0.11 020 250 036  2.00|0.22490 1.8310.7 031,01 172103
Sup 0.12 0.09 0.24 3.43 0.33 3.30 0.287[).() 233~L11 0.24“]41 2.40“].9

Table 9.6 | Highlighting (H) and editing (E) average statistics across directions and
highlight modalities. Measured: actual edits performed in the specified modality.
Projected: using modality highlights over No HicHricHT edits to account for editing
biases (Section 9.3.2). Random highlights matching average word frequencies are
used as random baseline, and Projected increases;/decreases; compared to Measured
counterparts are shown. Significant Oracle gains over all other modalities are underlined
(p < 0.05 with Bonferroni correction).

* Ag dZE(P(E|H)/P(E\ﬂH) shows how much more likely an edit is to fall within

rather than outside highlighted characters.

* Ag difP(H|E)/P(H\—|E) shows how much more likely it is for a highlight to

mark edited rather than unmodified spans.

Intuitively, character-level recall P(H|E) should be more indicative of highlight quality
compared to precision P(E|H), provided that word-level highlights can be useful
even when not minimal. For example, if the fully-highlighted word traduttore is
changed to its feminine version tradutirice, P(H|E) = 1 (edit correctly and fully
predicted) but P(E|H) = 0.3 since word stem characters are left unchanged. Table 9.6
(Measured) shows metric values across the three highlight modalities”. As expected,
Oracle highlights obtain the best performance in terms of precision and recall, with
P(H|E), in particular, being significantly higher than the other two modalities across
both directions.

7Breakdowns by domain and speed shown in Table C.14 and Table C.13
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Surprisingly, we find no significant precision and recall differences between Oracle
and highlights, despite the word-level QE training of xcomeT used
in the former modality. Moreover, they support the potential of unsupervised, model
internals-based techniques to complement or substitute more expensive supervised
approaches. Still, likelihood ratios Ag, Ay > 1 for all modalities and directions indicate
that highlights are 2-4 times more likely to precisely and comprehensively encompass
edits than non-highlighted texts. This suggests that even imperfect highlights that do
not reach Oracle-level quality might effectively direct editing efforts toward potential
issues. We validate these observations by fitting a zero-inflated negative binomial
mixed-effects model to predict segment-level edit rates. Results confirm a significantly
higher edit rate for English—1Italian highlighted modalities and the social media domain
with p < 0.001 (features and significances shown in Appendix Table C.11). We find a
significant zero inflation associated with translator identity, suggesting the choice of
leaving MT outputs unedited is highly subjective.

Do Highlights Influence Editing Choices? ~ Since we found in Section 9.3.1 that the
proportion of highlighted characters affects the editing rate of translators, we question
whether the relatively high P(E|H) and P(H |E) values might be artificially inflated by
translators’ eagerness to intervene on highlighted spans. In other words, do highlights
identify actual issues, or do they condition translators to edit when they otherwise would
not? To answer this, we propose to project highlights from a selected modality—in which
highlights were shown during editing—onto the edits performed by the No Highlight
translators on the same segments. The resulting difference between measured and
projected metrics can then be used as an estimate of the impact of highlight presentation
on their resulting accuracy.

To further ensure the soundness of our analysis, we use a set of projected Random
highlights as a lower bound for highlight performance. To make the comparison fair,
Random highlights are created by randomly highlighting words in MT outputs to
match the average word-level highlight frequency across all highlighted modalities,
given the current domain and translation direction. Table 9.6 (Projected) shows results
for the three highlighted modalities. First, all projected metrics remain consistently
above the Random baseline, suggesting a higher-than-chance ability to identify errors
even for worst-performing highlight modalities. Projected precision scores P(E|H)
depend on edit frequency, and hence see a major decrease for English—Italian, where
the No Highlight edit rate P(E) is much lower. However, the increase in Ay across all
English—Italian modalities confirms that, despite the lower edit proportion, highlighted
texts remain notably more likely to be edited than non-highlighted ones. Conversely,
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the lower Ag, P(H|E) and Ap for English—Dutch show that edits become much less
skewed towards highlighted spans in this direction when accounting for presentation
bias.

Overall, while the presence of highlights makes English—Italian translators more likely
to intervene in MT outputs, their location in the MT output often pinpoints issues that
would be edited regardless of the highlighting. English—Dutch translators, on the
contrary, intervene at roughly the same rate regardless of highlight presence, but their
edits are focused mainly on highlighted spans when they are present. This difference is
consistent across all subjects in both directions, despite the identical setup and comparable
MT and QE quality across languages. This suggests that cultural factors may play a
non-trivial role in determining the usability and influence of QE methods regardless of
span accuracy, a phenomenon previously observed in human-Al interaction studies Ge
et al. (2024).

9.3.3 Quality Assessment

We continue our assessment by inspecting the quality of MT and post-edited out-
puts along three dimensions. First, we use XCOMET segment-level QE ratings as an
automatic approximation of quality and compare them to human-annotated quality
scores collected in the last phase of our study. For efficiency, these are obtained for the
0-100 Direct Assessment scale commonly used in QE evaluation (Specia et al., 2020),
but following an initial step of MQM error annotation to condition scoring on found
errors, as prescribed by the ESA protocol (Kocmi et al., 2024b). Then, MQM error
span annotations are used to analyze the distribution of error categories. Finally, we
manually assess critical errors, which were inserted to quantify the effect of highlighting
modalities on unambiguous issues.

Do Highlights Influence Post-Editing Quality?  In this stage, we focus particularly
on edited quality improvements, i.e. how post-editing the same MT outputs under different
highlight conditions influences the resulting quality of translations. We operationalize
this assessment using human ratings and automatic metrics to score MT and post-edited
translations, using their difference as the effective quality gain after the post-editing
stage. Scores for this metric are generally positive—that is, human post-editing improves
quality—and are bounded by the maximal achievable quality gain given the initial
MT quality. Figure 9.4 shows median improvement values across quality bins defined
from the distribution of initial MT quality scores (shown in histograms), in which all
post-edited versions of each MT output appear as separate observations. Positive median
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Figure 9.4 | Median quality improvement for post-edited segments at various initial
MT quality levels across domains and highlight modalities. Quality scores are estimated
using xcoMeT segment-level QE (top) and professional ESA annotations (bottom).
Histograms show example counts across quality bins for the two metrics. Dotted lines
show upper bounds for quality improvements given starting MT quality.

scores confirm that post-edits generally lead to improvements in quality across all tested
settings. However, we observe different trends across the two metrics: across both
domains, xcomeT greatly underestimates the human-assessed ESA quality improvement,
especially for biomedical texts, where it shows negligible improvement regardless of the
initial MT quality. These results echo recent findings cautioning users against the poor
performance of trained MT metrics for unseen domains and high-quality translations
(Agrawal et al., 2024; Zouhar et al., 2024). Focusing on the more reliable ESA scores, we
observe large quality improvements from post-editing, as indicated by near-maximal
quality gains across most bins and highlight modalities. While No Highlight seems to
underperform other modalities in the social media domain, the lack of more notable
differences in gains across highlight modalities suggests that highlights’ quality impact
might not be evident in terms of segment-level quality, motivating our next steps
in the quality analysis.
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Figure 9.5 | Median ESA quality improvement following post-editing for segments
at various initial MT quality levels across translators’ speed groups, showing no clear

quality trends across editors’ productivity levels.

We also find no clear relationship between translator speed and improved edited quality,
suggesting that higher productivity does not come at a cost for faster translators (Fig-
ure 9.5). This finding confirms that neglecting errors is not the cause of the different

editing patterns observed in previous sections.

Which Error Types Do Highlights Identify?  Table 9.7 shows a breakdown of
MQM annotations for MT and all highlight modalities using the Accuracy, Style and
Linguistic macro-categories of MQM errors.® At this granularity, differences across
modalities become visible, with overall error counts showing a clear relation to Ag
from Table 9.6, i.e. Oracle being remarkably better for English—Italian, with milder
and more uniform trends in English—Dutch. At least for English—Italian, these results
confirm that an observable quality improvement from editing with highlights is present
in the best-case Oracle scenario. By contrast, for English—Dutch, the

method is found to outperform even the Oracle setting in reducing the amount of

$Per-domain breakdown in Figure C.8.
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Lang. MQM Category | MT No Highlight ~ Oracle Supervised
| Maj. Min. | Maj. Min. |Maj. Min. | Maj. Min. | Maj. Min.
Accuracy - Addition 0 1 0 0 0 0 0 0 1 1
Accuracy - Mistranslation | 21 22 10 12 4 8 24 17 17 17
Accuracy - Inconsistency 2 4 1 3 2 2 1 3 0 2
Accuracy - Omission 2 0 0 0 0 1 4 1 1 2
o Accuracy - Untranslated 1 4 1 2 0 1 1 1 3 2
<
= Style - Inconsistent Style | 0 0 0 0 0 0 0 0 0 0
= Style - Readability 17 25 | 5 30 0 12 | 4 34 1 29
Style - Wrong Register 0 8 0 3 0 3 1 1 3 2
Linguistic - Grammar 6 15 2 16 0 5 3 12 2 12
Linguistic - Punctuation 1 13 0 9 0 3 1 6 0 3
Linguistic - Spelling 5 3 0 4 0 3 3 2 0 1
Total | 55 95 |19 79 | 6 38 |4 77 |28 71
Accuracy - Addition 0 1 0 2 0 3 0 2 0 1
Accuracy - Mistranslation | 25 34 18 25 23 27 12 31 16 29
Accuracy - Inconsistency 0 0 0 2 0 2 0 2 0 5
Accuracy - Omission 3 1 1 1 2 1 1 1 4 2
- Accuracy - Untranslated 4 4 1 1 1 4 1 3 0 2
|53
= Style - Inconsistent Style 2 0 0 5 1 7 0 2 0 9
R Style - Readability 127 |1 20 0 13 | 2 15 6 41
Style - Wrong Register 0 2 0 3 0 3 0 1 1 0
Linguistic - Grammar 3 19 2 14 3 23 2 6 3 12
Linguistic - Punctuation 0 6 0 3 0 4 0 2 0 3
Linguistic - Spelling 1 1 1 1 2 1 0 1 0 0
Total | 39 95 | 24 77 | 32 88 | 18 66 | 30 104

Table 9.7 | MQM error counts averaged across n = 3 translators per highlight modality
for every translation direction. A description of MQM categories is available in Table 9.1.

errors, while it fares relatively poorly for English—Italian. We also observe a distinct
distribution of Accuracy and Style errors, with the formers being more prevalent in
biomedical texts, and the latters appearing more frequently in translated social media
posts (Figure C.8). We posit that differences in error types across domains might explain
the opposite productivity trends observed in Section 9.3.1. While highlighted accuracy
errors might lead to time-consuming terminology verification in biomedical texts, style
errors might be corrected more quickly and naturally in the social media domain.

Do Highlights Detect Critical Errors? ~ We examine whether the critical errors we
inserted were detected by different modalities, finding that while most modalities fare
decently with more than 62% of critical errors highlighted, is the only
setting for which all errors are correctly highlighted across both directions (Table 9.8).
Then, critical errors are manually verified in all outputs, finding that 16-20% more
critical errors are edited in highlighted modalities compared to No Highlight. Hence,
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ID  Error Type ‘ Has Highlight % Post-edited
‘ Oracle Sup. ‘ No High. Oracle Sup.
1-8  Wrong number Both Both 67 83 83 83
13-6 Remove negation Both Both 50 33 33 50
16-3 Title literal translation Both Both Both 83 100 100 100
20-1 Wrong acronym Both 0 33 33 33
20-7 Wrong acronym (1) Neither Both  Neither 0 58 50 25
20-7 Wrong acronym (2) Both 0 58 50 25
22-1 Name literal translation | Both Both Both 50 50 83 67
23-4 Addition Both  Neither 100 100 83 50
31-2 Wrong acronym Both  Neither 17 33 17 33
34-7 Numbers swapped Both 17 50 33 67
37-4 Verb polarity inverted Both Both Both 67 83 67 83
43-5 Wrong name Both Both Both 50 83 67 83
48-5 Wrong term Both 67 50 83 83
Total | 65 100 62 | 44 63 60 60

Table 9.8 | Highlighting and post-editing statistics for manual critical errors (Sec-
tion 9.2.3). Labels in Has Highlight columns indicate whether the error was high-
lighted in , only one (1 1/ ) only or Neither directions. Total scores represent
the percentage of detected errors (13 errors, 6 editors per highlight modality).

highlights might lead to narrow but tangible quality improvements that can go
undetected in coarse quality assessments, and finer-grained evaluations might be
needed to quantify future improvements in word-level QE quality.

9.3.4 Usability

In the post-task questionnaire answers (Table 9.9), most translators stated that the MT
outputs had an average-to-high quality and that the provided texts were challenging to
translate. Highlights were generally found to be reasonably accurate, but they were
generally not found helpful to improve either productivity or quality (including Oracle
ones). Interestingly, despite the convincing gains for critical errors measured in the
last section, most translators stated that highlights did not influence their editing and
did not help them identify errors that would have otherwise been missed. Specifically,
this suggests that translators may not readily perceive potential quality improvements
and may consider them secondary to the extra cognitive load elicited by highlighted
spans. When asked to comment about highlights, several translators called them “more
of an eye distraction, as they often weren’t actual mistakes” and “not quite accurate enough to
rely on them as a suggestion”. Some translators also stated that missed errors led them to
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Question Italian Dutch

MT outputs were generally of high -_i h_'
quality.

Provided texts were challenging to H “
translate.

Highlights ...
... were generally accurate in . hj
detecting potential issues.
... were generally useful during o e
editing.
... improved my editing ____ P #
productivity.
... improved the quality of my R — - #
translations.

... required additional editing effort H u
on my part.

.. influenced my choices regarding o
edlts
... helped identify errors I'd have o _i o
otherwise missed.

Table 9.9 | Post-task questionnaire responses. Bars represent responses ranging from

1-Strongly disagree (no bar) to 5-Strongly agree (full bar), averaged across n = 3
translators per language for No HiHLIGHT, ORACLE, UNSUPERVISED, and SUPERVISED.
Dotted line mark avg. judgments of 3-Neither agree nor disagree.

“disregarding the highlights to focus on checking each sentence”. Despite their high quality,
only one editor working with Oracle highlights found highlights helpful in “making the
editing process faster and somehow easier”. Taken together, these comments convincingly
suggest a negative perception of the quality and usefulness of highlights, indicating that
improvement in QE accuracy may not be sufficient to enhance QE usefulness in
editors’ eyes.

9.4 Limitations

Our study presents certain limitations that warrant consideration when interpreting its
findings and guiding future research.

Firstly, while we included two domains and translation directions to improve the
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generalizability of our findings, our results suggest that language and domain play a
crucial role in determining the effectiveness of word-level QE for human post-editing.
While we observed mild gains from word-level QE on our tested mid-resourced
translation directions (English—Italian and English—Dutch), we expect limited, if any,
benefit of such approaches in low-resource languages and domains for which MT
systems and QE methods are likely to underperform (Sarti et al., 2022; Zouhar et al.,
2024). Furthermore, the domains tested in our study (biomedical and social media posts)
provided concrete challenges in the form of specialized terminology and idiomatic
expressions, respectively, which are known to hinder the quality of MT outputs (Neves
et al., 2024; Bawden and Sagot, 2023). While future work should ensure that our
findings can be extended to other domains and languages, the limited benefits brought
by the tested word-level QE methods in challenging settings suggest a limited usefulness
for higher-resource languages and more standard domains, such as news or Wikipedia
texts.

Secondly, we acknowledge that several design choices in our evaluation setup, rather
than about the QE methods themselves, may have influenced our results. These include,
for instance, the specific procedure for discretizing continuous scores from the

method into error spans, and the method of obtaining Oracle highlights via
majority voting among post-editors. While we believe these choices are justified within
the context of our study, their impact on the outcomes cannot be entirely discounted.
Future studies might benefit from a more fine-grained assessment of how such low-level
decisions influence the perceived accuracy and usability of word-level QE.

Finally, subjective factors such as the translators’ inherent propensity to edit, their prior
opinions on the role of MT in post-editing, and their individual editing styles inevitably
influenced both quantitative and qualitative assessments in this study. We attempted
to mitigate these effects by ensuring a uniform and controlled evaluation setup for
all 42 professional translators and by employing averaged judgments for translators
working on the same highlight modality. However, we acknowledge that post-editor
subjectivity might limit the reproducibility of our findings.

9.5 Broader Impact and Ethical Considerations

Our study explicitly centers the experience of professional translators, responding to
recent calls for user-centered evaluation of translation technologies. By prioritizing
translators’ perspectives and productivity, we aim to contribute to methods that com-
plement rather than replace human expertise. Our findings highlight a gap between
user perception and measured quality improvements, suggesting that future efforts
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should focus primarily on improving the usability of these methods in editing inter-
faces. In particular, new assistive approaches for post-editing should not only strive to
increase productivity but also reduce the cognitive burden associated with post-editing
work. This insight is crucial for designing more user-centered quality estimation tools
that genuinely support human work. Ultimately, our results suggest that subjective
norms across different domains and cultures play an important role in determining
the effectiveness of proposed methodologies, underscoring the importance of account-
ing for human factors when designing such evaluations. All participants in this study
were professional translators who provided informed consent. The research protocol
ensured anonymity and voluntary participation, with translators recruited and remu-
nerated through professional translation providers. The study’s open data release further
promotes transparency, enabling other researchers to reproduce and build upon our

findings.

9.6 Conclusion

Our QE4PE study evaluated the impact of various error-span highlighting modalities,
including automatic and human-made ones, on the productivity and quality of human
post-editing in a realistic professional setting. Our findings highlight the importance
of domain, language and editors’ speed in determining the effect of highlights on
productivity and quality, underscoring the need for broad evaluations encompassing
diverse settings. The limited gains of human-made highlights over automatic QE and
their indistinguishable perception from editors’ assessment indicate that further gains in
the accuracy of these techniques might not be the determining factor in improving
their integration into post-editing workflows. In particular, future work might explore
other directions to further assess and improve the usability of word-level QE highlights,
for example, by studying their impact on non-professional translators and language
learners, or by combining them with edit suggestions to justify the presence of error
spans.

While our QE4PE study included a preliminary assessment of unsupervised methods
for word-level QE, the next chapter expands our investigation by conducting a broad
evaluation of unsupervised word-level QE methods for post-editing, including a com-
parison with state-of-the-art supervised approaches. In light of our results showing the
user-dependent effectiveness of quality estimation, we also inspect how the presence of
multiple human annotations influences the quality assessment of identified error spans.



CHAPTER 10

Unsupervised MT Error Detection
and Human Disagreement

Chapter Summary

This final experimental chapter presents our comprehensive evaluation of un-
supervised word-level quality estimation methods exploiting interpretability
and uncertainty quantification methods to identify translation errors in model
outputs. In our evaluation spanning 14 metrics across 12 translation directions,
we also quantify the impact of human label variation on metric performance,
using multiple edit sets from the DIVEMT and QE4PE studies of the previous
chapters. Our results highlight the untapped potential of unsupervised metrics,
the shortcomings of supervised methods when faced with label uncertainty, and
the brittleness of single-annotator evaluation practices.

This chapter is adapted from the paper Unsupervised Word-level Quality Estimation
for Machine Translation Through the Lens of Annotators (Dis)agreement (Sarti et al.,
2025a).

So, you see, translators do not so much deliver a message as they rewrite the
original. And herein lies the difficulty
always reflects the authors ideology and biases.

rewriting is still writing, and writing

— Rebecca F. Kuang, Babel (2022)
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Figure 10.1 | Example of German—English translation with two sets of human word-
level error span annotations and two examples of continuous and binary WQE metrics.

10.1 Introduction

Word-level error spans are widely used in machine translation evaluation to obtain
robust and fine-grained estimates of translation quality (Lommel et al., 2013; Freitag
et al., 2021a,b; Kocmi et al., 2024b). Due to the cost of manual annotation, word-level
quality estimation (WQE) was proposed for assisting in annotating error spans over
MT outputs (Zouhar et al., 2025). Modern WQE approaches generally rely on costly
inference with large language models or ad-hoc training with large amounts of human-
annotated texts (Fernandes et al., 2023a; Kocmi and Federmann, 2023b; Guerreiro et al.,
2024), making them impractical for less resourced settings (Zouhar et al., 2024).

To improve the efficiency of MT quality assessment, several works explored the use
of signals derived from the internals of neural MT systems (Fomicheva et al., 2020,
2021; Leiter et al., 2024), for identifying problems in MT outputs, such as hallucinations
(Guerreiro et al., 2023a,b; Dale et al., 2023a,b; Himmi et al., 2024). However, previous
works have focused on sentence-level metrics for overall translation quality and do not
evaluate performance on multiple label sets due to high annotation costs (Fomicheva
et al., 2022b; Zerva et al., 2024).

In this chapter, we conduct a more comprehensive evaluation spanning 10 unsupervised
metrics derived from models’ inner representations and predictive distributions to
identify translation errors at the word level. We test three open-source multilingual
MT models and LLMs of varying sizes across 12 translation directions, including
typologically diverse languages and challenging textual domains. Importantly, we focus
on texts with multiple human annotations to measure the impact of individual annotator
preferences on metric performance, setting a “human-level” baseline for the WQE task.

We address the following research questions:
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* How accurate are unsupervised WQE metrics in detecting MT errors compared
to trained metrics and human annotators?

* Are popular supervised WQE metrics well-calibrated?

* Are the relative performances of WQE metrics affected by the variability in
human error annotations?

We conclude with recommendations for improving the evaluation and usage of future

WQE systems.

10.2 Related Work

Actionable Insights from Interpretability ~ Advances in interpretability research
have elucidated multiple mechanisms underlying decision-making, knowledge repre-
sentation, and biases in LMs (Ferrando et al., 2024). However, a better understanding
of model’s inner workings often did not translate to tangible gains in model design
and other practical applications, which remain rarely explored (Mosbach et al., 2024).
Some examples in this direction include using targeted machine unlearning methods
for safety-critical scenarios (Barez et al., 2025), or the use of attribution for trustworthy
context citations in LM generations (Cohen-Wang et al., 2024; Sarti et al., 2024c¢; Qi,
Sarti, et al., 2024). In this study, unsupervised metrics extracted from an MT model
during generation are employed to detect errors in models’ generated outputs, following
the unsupervised QE paradigm introduced in Section 2.6. This can be seen as a variant
of out-of-distribution detection in signal processing research (Hendrycks and Gimpel,
2017).

Uncertainty Estimation for Language Models  The estimation of uncertainty
in language models has garnered increasing attention (Baan et al., 2023), particularly
in the context of generation tasks for which the set of plausible responses is large
(Giulianelli et al., 2023). Predictive uncertainty is typically decomposed into its aleatoric
and epistemic components, representing respectively the irreducible variability in the
modeled phenomena, and the improvable confidence in model predictions (Kiureghian
and Ditlevsen, 2009). Popular methods for uncertainty estimation involve the calibration
of predictive probabilities to reflect aleatoric uncertainty (Jiang et al., 2020; Ulmer et al.,
2022; Zhao et al., 2023; Chen et al., 2023), and conformal sets prediction (Zerva and
Martins, 2024; Ravfogel et al., 2023). In this study, we utilize uncertainty signals from
the predictive distribution of MT models and their internal processing to efficiently
predict the resulting generation quality at a fine-grained, token-level scale.
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Human Label Variation =~ Human label variation is a type of uncertainty that arises
from the inherent variability in human judgments (Plank et al., 2014; Plank, 2022),
which can be hard to disentangle from actual annotation mistakes (Snow et al., 2008;
Weber-Genzel et al., 2024). The use of multiple references was recently recommended
to ensure a sound evaluation of generative LMs, reflecting human-plausible levels of
variability (Giulianelli et al., 2023), contrary to standard practices that employ a single
set of “gold” labels. In our analysis of QE4PE data, which contains multiple edits,
we adopt a perspectivist approach! to ensure a robust assessment of WQE metrics by
accounting for annotators’ disagreement (Uma et al., 2021).

10.3 Models and Datasets

We use datasets containing error annotations or post—edits on the outputs of open-source
models to extract unsupervised WQE metrics using real model outputs, thereby avoiding
potential confounders. We select the following datasets, summarized in Table 10.1:

DivEMT  We reuse the DivEMT dataset, introduced in Chapter 8, including out-
of-English machine translations towards six typologically diverse target languages
(English— Arabic,Italian,Dutch, Turkish,Ukrainian, Vietnamese) produced by Google
Translate and mBART-50 1-to-many for a subset of Wiki texts from the FLORES
dataset (Goyal et al., 2022), with edits made by professional translators. In this study,
we evaluate unsupervised metrics on the mBART-50 1-to-many model, converting the
human post-edits into token-level labels to perform a cross-lingual comparison over a
fixed set of examples.

WMT24 The WMT24 dataset is taken from the General Machine Translation Shared
Task at WMT 2024 (Kocmi et al., 2024a). It contains evaluation of several machine
translation systems across English—{ Czech, Hindi, Japanese, Chinese, Russian} (634
segments per language) and Czech— Ukrainian (1954 segments). The human evaluation
was conducted using the Error Span Annotation protocol (ESA, Kocmi et al. (2024b)),
which involves human annotators highlighting erroneous spans in the translation and
marking them as either MINOR or Major errors. This dataset covers the news, social, and
speech (with automatic speech recognition) domains. We adopt the official prompting
setup from the WMT24 campaign, using the Aya23 model alongside the provided
prompt and three in-context translation examples per language to ensure uniformity
with previous results.? Aya23 is a large language model introduced by Aryabumi et al.

"https://pdai.info/
Znttps://github.com/wmt-conference/wmt-collect-translations
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DivEMT WMT24 QE4PE
Languages EN—AR,IT, NL,TR,UK,VI  EN—JA,ZH,HI,CS,RU CS—UK EN—IT,NL
Errors type Post-edit Annotation Post-edit
Label sets 1 1 6
Domains Wiki Multiple Social, Biomed
MT Model mBART-50 Aya23 NLLB
# Segments 2580 5124 3888

Table 10.1 | Summary of tested datasets. Error spans are obtained from explicit error
annotations or post-edited spans.

(2024) to improve the multilingual capabilities of the original Aya model (Ustiin et al.,
2024) on a selected set of 23 languages. The model was included in the WMT24
evaluation by Kocmi et al. (2024a), resulting in the best translation performance among
the tested open-source models. The model is a decoder-only transformer model with
40 layers, a model dimension of 8196 and 64 attention heads per layer. Using WMT24
allows us to extend our evaluation to a state-of-the-art LLM, given the popularity of
such systems in MT (Kocmi et al., 2023).

QE4PE  The QE4PE dataset, introduced in Chapter 9, was created to measure the
effect of word-level error highlights when included in real-world human post-editing
workflows. The QE4PE data provides granular behavioral metrics to evaluate the
speed and quality of post-editing of 12 annotators for En—1It and En—Nl across two
challenging textual domains (social posts and biomedical abstracts) and four error span
highlighting modalities, including the unsupervised Surprisal MCDy,,; method and the
supervised XxCOMET-XXL we also test in this study. Provided that the presence of error
span highlights was found to influence the editing choices of human editors, we limit
our evaluation to the six human annotators per language that post-edited sentences
without any highlights (3 for the Oracle Post-edit task to produce initial human-based
highlights, and 3 for the No Highlight modality in the main task). This prevents us from
biasing our evaluation of WQE metrics in favor of the metrics that influenced editing
choices. As for DIVEMT, we use the post-edits over translations—in this case, those of
the NLLB 3.3B model (NLLB Team et al., 2024)—to produce token-level error spans,
enabling an evaluation of WQE metrics across multiple annotation sets.
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10.4 Evaluated Metrics
The following metrics were evaluated using the Inseq library introduced in Chapter 3.

Predictive Distribution Metrics ~ We use the Surprisal of the predicted token ¢*, as
negative log-probability — log p(t|t<;), and the Entropy H of the output distribution
Py over vocabulary V, lewl p(ti|t<i)logy p(ti|t<;), as simple metrics to quantify
pointwise and full prediction uncertainty (Fomicheva et al., 2020). For surprisal, we also
compute its expectation (MCDa,yg) and variance (MCDy,,) with n = 10 steps of Monte
Carlo Dropout (MCD, Gal and Ghahramani, 2016) to obtain a robust estimate and
a measure of epistemic uncertainty in predictions, respectively. Intuitively, epistemic
uncertainty reflects models’ lack of knowledge rather than data ambiguity.> We employ

the mean of the negative log probabilities as a robust estimate of surprisal:

Surprisal MCD

T
avg = IMCD = Z log p(z|©:)

Moreover, we estimate predictive uncertainty by calculating the variance of predictive
p y by g
probabilities under the same setup:

'ﬂ \

T
Surprisal MCD = Z —log p([©¢) — Gmcp)

Vocabulary Projections  We use the Logit Lens method (LL, nostalgebraist, 2020),
introduced in Section 2.1.3, to extract probability distributions Py, ..., Py_q over V/
from intermediate activations at every layer ly, ..., Ix_1 of the decoder. We use the
surprisal for the final prediction at every layer (LL-Surprisal) to assess the presence of
layers with high sensitivity to incorrect predictions. For the NLLB and mBART-50
models, we also apply a final layer normalization before the projection, following the
model architecture. For the Aya model, we instead scale logits by 0.0625 (the default
logit_scale defined in the model configuration). Following the residual stream view
of the transformer model (Elhage et al., 2021), the resulting logits offer insight into the
model’s predictive confidence at that specific depth of processing. Then, we compute
the KL divergence between every layer distribution and the final distribution Py,
e.g. KL(Py_1|/Pn), to highlight trends in the shift in predictive probability produced

SMCD is tested only on encoder-decoder models since Aya layers do not include dropout. The
MCDy setting corresponds to the setting from Chapter 9.
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by the application of remaining layers (LL KL-Div). Finally, we adapt the approach of
Baldock et al. (2021) and use the number of the first layer for which the final prediction
corresponds to the top logit as a metric of model confidence, I s.t. argmax P, = ¢t* and
argmax P; # t* Vi < | (LL Pred. Depth).

Context mixing  We employ simple estimates of context relevance using attention
weights produced during the transformer attention operation. More specifically, for
every attention head at every layer of the decoder module, we extract a score for
every token in the preceding context. We then use the entropy of the distribution of
attention weights* over previous context as a simple measure of information locality
during inference (Ferrando et al., 2022b; Mohebbi et al., 2023). Following Fomicheva
et al. (2020), we experiment with using the mean and the maximum entropy across
all attention heads of all layers as separate metrics (Attn. Entropyayg/max)- Finally, we
evaluate the Between Layer OOD method by Jeleni¢ et al. (2024), employing gradients
to estimate layer transformation smoothness for OOD detection (BLOOD).

Supervised baselines ~We also test the state-of-the-art supervised WQE model
xcoMEeT (Guerreiro et al., 2024), introduced in Section 2.6. In this chapter, we focus on
their word-level error span prediction capabilities in a quality estimation setup, where
the model classifies every input token according to MQM severity levels { ok, MINOR,
MAJOR, CRITICAL} with a learned linear layer.> Contrary to the continuous metrics from
the previous section, binary labels from xcomET cannot be easily calibrated to match
subjective annotation propensity. Hence, we propose to adapt the XxcCOMET metric to
use the sum of probability for all error types as a token-level continuous confidence
metric, s(t*) = p(minor) + p(major) + p(critical), which we dub XCOMET ¢.

Human Editors  For QE4PE, we report the min/mean/max agreement between
each annotator’s edited spans and those of the other five editors as a less subjective
“human-level” quality measure.

10.5 Experiments

10.5.1 Setup

Token-level Evaluation  Error spans used as labels in our evaluation are defined
at the character level, while metric scores depend on the tokenization employed by

4For encoder-decoder model, self-attention and cross-attention weights are concatenated and
renormalized.
5The default xcomET metric was used with the unbabel-comet library (v2.2.6).
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Source gy So why is it that people jump through extra hoops to install Google Maps?
MT,, (NLLB) Quindi perché le persone devono fare un salto in piut per installare Google Maps?

salto

Annotator ¢1 Quindi perché le persone devono fare un |passaggiol in piui per installare Google Maps?
devono fare un salto in pit
Annotator t2 Quindi perché le persone |fanno i salti mortali| per installare Google Maps?
devono fare un salto in pitt
Annotator ¢3 Quindi perché le persone 'effettuano dei passaggi ulteriori e superflui per installare Google
Maps?
Quindi devono fare salto
Annotator ¢4 Allora perché le persone [fanno un [passaggio in pit per installare Google Maps?

Quindi perché le persone devono fare un salto in pi
Annotator t5 E allora mi chiedo: perché gli utenti iPhone si affannano tanto per installare Google Maps?

devono fare un salto in pilt

Annotator t6 Quindi perché le persone fanno di tutto per 1nstallare Google Maps?
2 5
Edit Counts Quindi perché le persone |devono fare un - in plu per installare Google Maps?
minor minor
XCOMET-XL Quindi perché le persone 'devono fare un salto in pitt per installare Google Maps?
minor major
XCOMET-XXL Quindi perché le persone |devono fare un salto in pitt per installare Google Maps?
41 36 51 o 69 7o 8L 74 76 30 AT o 26
XCOMET-XL conr Quindi perché le persone devono fare un [salto in pitt per install are Google
36 24
Maps ?
51 8320 42 84 95 86 78 o5 00 g 00
XCOMET-XXL cone  Quindi [perché le persone devono fare -- in! |pitt per install are Google
00 .00
Maps ?
05 o0 g 41 09 gy 59 g0 A2 00 o 00 00
Surprisal MCD v, Quindi perché le persone |devono| fare un B o in pitt per installare Google
00 .00
Maps ?

Table 10.2 | Annotated example from the En—It portion of the QE4PE dataset. Top:
Annotator edits with highlighted final text and replaced text on top, with count-based
aggregation showing inter-annotator agreement. Bottom: Word-level annotations for
best-performing metrics discussed in the study.

either the MT model (for unsupervised metrics) or xcoMeT (for supervised metrics). To
facilitate comparison, we label tokens as part of an error span if at least one character
contained within them was marked as an error or edited by an annotator. Table 10.2
and Table 10.3 provide examples of various segmentations for the same MT output.

Constraining generation  Evaluating metrics at the word level can be challeng-
ing due to the need for perfect uniformity between model generations and annotated
spans. For this reason, we extract unsupervised metrics during generation while force-
decoding the annotated outputs from the MT model to ensure perfect adherence with
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Source g So the challenges in this are already showing themselves. I'm likely going to have a VERY
difficult time getting a medical clearance due to the FAA’s stance on certain medications.

MT (Aya23)  Takze problémy s tim se jiZ projevuji. Pravdépodobné budu mit PRESNE obtizny ¢as dosta
lékatské potvrzeni kvili postoji FAA k nékterym lékim.

minor major

Annotator Takze problémy s tim se jiZ projevuji. Pravdépodobné budu mit _ dostat

lékatské potvrzeni kvili postoji FAA k nékterym lékim.

minor minor
XCOMET-XL Takze problémy s tim se jiz projevuji. Pravdépodobné budu mit PRESNE obtizny cas dostat
minor
lékatské potvrzeni kviili postoji FAA k nékterym lékim
minor
XCOMET-XXL Takze problémy s tim se jiz projevuji . Pravdépodobné budu mit

major

PRESNE obtizny cas dostat lékafské potvrzeni kviili postoji FAA k nékterym lékam.

023 0.28 0.28 0.19 031 0.23 040 048 0.79
0.26 0.17 o017
XCOMET-XL cone ' TakZe problémy s [tim se jiz projevuji .  Pravdépodobné |[budu imit
0.65 076 064 0.50 0.51 019 034 027 020 020 021
v 7| % TR 7 il o v 7 /1. 0.17
obtizny |cas |dostat [lékafské potvrzeni kvili postoji FAA k nékterym lékam
0.25 0.24 0.26 031 029 0.23 0.26 0.01 0.03 0.37 0.30
v 2 . B D) o w9 0.01 v v 2 > VT
XCOMET-XXL conr | 1akze problémy (s [tim [s€] jiz |projevujil . Pravdépodobné budu [PRESNE| obtizny
032 024 0.10 0.13 001 000 000 000 000 0.00
= v ST . G e 0.00
Cas |dostat lékatské |potvrzeni kvilli postoji FAA k nékterym lékim
0.88 1.93 188 084 146 113 0.89 0.44 022 0.09 2.09
5 7 55 ey 100 g e 01 . - ,
Out. Entropy Takze |problémy [§ tim [s& jiz [projevuji . Pravdépodobné budu mit
3.70 0.09 1.40 1.02 0.64 0.69 0.24 0.80 1.01 0.55 0.18

Cas |dostat| lékatské potvrzeni kviili postoji FAA 'k nékterym lékim o

Table 10.3 | Annotated example from the En—Cs portion of the WMT24 dataset. Top:
Annotator edits with highlighted Error Span Annotation of minor and major errors.
Bottom: Word-level annotations for best-performing metrics discussed in the study.

annotated error spans. In general, such an approach could introduce a problematic
confounder in the evaluation, as observed results may be the product of constraining
a model towards an unnatural generation, rather than reflecting the underlying phe-
nomena. However, in this study, we carefully ensure that the generation setup matches
exactly the one of previous works where the annotated translations were produced,
using the same MT model and the same inputs.® Hence, the constraining process serves
as a simple assurance of conformity in light of potential discrepancies introduced by
different decoding strategies, and does not affect the soundness of our method.

®Generation parameters such as sampling temperature are not relevant in this setting, provided that
they only alter the selection of the following output token, which we do via force-decoding.
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DivEMT WMT24 QEA4PE

Method
AP Fi1* AP Fi1* AP Fi1*
Random .34 .50 .05 .09 17 27
Surprisal 43 .53 .08 13 .23 .32
Out. Entropy 46 51 .10 .16 .23 31
. Surprisal MCDave 43 | 53 - - 24 33
2 Surprisal MCDyar 47 | 54 - - 26 .34
% LL SurprisalBEST 42 .53 .09 .15 .23 .32
&  LL KL-Divggsr 43 51 .07 12 .20 .29
% LL Pred. Depth .39 51 .06 A2 .20 .29
Att. Entropyae 37 50 .05 .09 .18 .28
Att. Entropywax 34 50 .05 .09 .16 .28
BLooDggsr 34 .50 - - 17 28
XCOMET-XL 42 45 .09 19 .23 .34
2 XCOMET-XLconr 54 55 15 0 23 32 .37
5 XCOMET-XXL 43 41 09 20 22 31
XCOMET-XXLconE .56 .55 .16 .24 33 37
. Hum. Editorsyn - - - - 24 34
£ Hum. Editorsye - - - - 28 4
®  Hum. Editorsyax - - - - 32 47

Table 10.4 | Average Precision (AP) and Optimal F1 (F1*) for metrics across tested
datasets. Results are averaged across all languages and annotators, with best unsupervised

and overall best results highlighted.

10.5.2 Results

How Accurate are Unsupervised WQE Metrics?  Table 10.4 reports the average
metrics performance across all translation directions across tested datasets.” We report
Average Precision (AP) as a general measure of metric quality across the full score
range, and we estimate calibrated metric performance as the best F1 score (F1*) across
all thresholds for binarizing continuous metric scores into pos./neg. labels matching

human annotation.?

Our results show that, despite high variability in error span
prevalence across different models, languages and annotators, metric rankings remain
generally consistent, suggesting the presence of robust relations between various

signals sourced from models’ inner workings and translation errors.

Among unsupervised metrics, we find those based on the output distribution to be

7Full breakdown available in Table C.16, Table C.17, Table C.18, Table C.19.
$Random baseline AP values match the proportion of tokens marked as errors, which can vary
greatly.
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XComet XXL Conf.
(AP = 0.48)
XComet XL Conf.
(AP = 0.46)
XComet XXL
(AP = 0.34)
XComet XL
(AP = 0.34)
Surprisal MCD Var
(AP = 0.39)
. Chance level

(AP = 0.25)

Precision

0.0 T T T T
00 02 04 06 08 1.0

Recall

Figure 10.2 | Precision-Recall tradeoff for binary and confidence-weighted xcomeT
variants and the Surprisal MCD,,, metric for DivEMT EN—IT.

most effective at identifying error spans, in line with previous segment-level QE results
(Fomicheva et al., 2020). Notably, the Surprisal MCDy,, shows strong performances in
line with the default xcomeT models. For the multi-label QE4PE dataset, we find that
the best supervised metrics score on par with the average human annotator consensus
(Hum. Editors,y,), while unsupervised metrics generally obtain lower performances.

Confidence Weighting Enables xcomet Calibration  From Table 10.4 results,
default xcoMET metrics underperform compared to the best unsupervised techniques, a
surprising result given their ad-hoc tuning. On the contrary, simple continuous scores
derived from XCOMET (XCOMET,¢) consistently reach better results across all tested
sets. Figure 10.2 shows the precision-recall tradeoff for these metrics on the EN—IT
subset of the DivEMT dataset.” In their default form, commonly used for evaluation via
the unbabel-comet library, xcoMET metrics consistently outperform Surprisal MCDy,,
in terms of precision (51-60%, compared to 34% optimal precision for MCDy,,), but
identify only 32-26% of tokens annotated as errors, resulting in lower AP.

The low recall of these metrics may be problematic in WQE applications, where
omitting an error could result in oversights by human post-editors, who may trust the
comprehensiveness of WQE predictions. On the contrary, the confidence-weighted
XCOMET ¢ shows strong performances across the whole recall range, resulting in
consistent improvements in both F1* and AP Table 10.4. Concretely, these results

9Results for all datasets in Figure C.11, Figure C.12, Figure C.13, Figure C.14.
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confirm that default xcomeT performance does not reflect the full capacity of the
metric, and operating with granular confidence scores can be beneficial when
calibration is possible.

Metrics Performance for Multiple Annotations While our evaluation so far
employed human error span annotations as binary labels, we set out to assess how more
granular labeling schemes impact metrics’ performance. Given L sets of binary labels
(up to 6 per language for QE4PE), we assign a score s € {1,..., L} to every MT token
using the number of annotators that marked it as an error, resulting in edit counts
reflecting human agreement rate, as shown in Table 10.2.

Figure 10.3 presents the correlation of various metrics as the number of annotators
available increases, with median values and confidence bounds obtained from edit
counts across all combinations of L label sets.!® The increasing trend in correlations
across all reported metrics indicates that these methods effectively reflect the aleatoric
uncertainty in error span labels, i.e., the disagreement between various annotators. In
particular, the Surprisal MCDy,, metric sees a steeper correlation increase than other
well-performing metrics, surpassing default xcomeT supervised approaches for higher
correlation bins. This suggests the epistemic uncertainty derived from noisy model
predictions might be a promising way to anticipate the aleatoric uncertainty across
human annotators for WQE. We observe that 95% confidence intervals for high-scoring
metrics largely overlap when a single set of labels is used, indicating that rankings of
metric performance are subject to change depending on the subjective choices
of the annotator. While this poses a problem when attempting a robust evaluation
of WQE metrics, we remark that including multiple annotations largely mitigates this
issue. As a result, we recommend explicitly accounting for human label variation by
including multiple error annotations in future WQE evaluations to ensure generalizable

findings.

10.6 Limitations

Our findings are accompanied by several limitations. Firstly, our choice of tested
datasets was limited by the availability of annotated outputs generated by open-source
MT models. While several other datasets matching these criteria exist (Fomicheva
et al., 2022b; Yang et al., 2023; Dale et al., 2023b), we restricted our assessment to a
sufficient subset to ensure diversity across languages and tested models to support our
findings. To facilitate comparison with other datasets, our evaluation for WMT24 treats

102=1 corresponds to binary labels from previous sections.
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Figure 10.3 | Spearman correlation between WQE metric scores and human edit counts
across multiple annotation sets for QE4PE EN—IT (left) and EN—NL (right).

available error spans as binary labels and does not directly account for error severity
in human-annotated spans. Our choice of unsupervised metrics was primarily driven
by previous work on uncertainty quantification in MT, and ease of implementation
for popular methods in mechanistic interpretability literature (Ferrando et al., 2024).
However, our choices in the latter category were limited, as most methods are nowadays
developed and tested specifically for decoder-only transformer models. Finally, despite
their strong performance, we found that unsupervised methods based on MCD require
substantial computational resources, and as such, we were unable to evaluate them on
Aya23 35B. While our primary focus was to establish baseline performances across
various popular methods, future work should leverage the latest insights from more
advanced techniques, such as those requiring the tuning of vocabulary projections
(Belrose et al., 2023; Yom Din et al., 2024) or the identification of “confidence neurons”
that modulate predictive entropy (Stolfo et al., 2024).
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10.7 Conclusion

We conducted a comprehensive evaluation of supervised and unsupervised WQE metrics
across multiple languages and annotation sets. Our results show that, while unsupervised
metrics generally lag behind state-of-the-art supervised systems, some uncertainty
quantification methods based on the predictive distribution show promising correlation
with human label variation. Moreover, we find that popular supervised WQE metrics
generally have low levels of recall and can benefit from confidence weighting when
calibration is possible. Finally, individual annotator preferences are key confounders in
WQE evaluations and can be mitigated by using multiple annotation sets.

We offer the following practical recommendations for evaluating WQE systems:

* Use agreement between multiple human annotations to control the effect of
subjective preferences and rank WQE metrics robustly.

* Employ an in-distribution calibration set of error spans before testing to ensure
fair metric comparisons, and favor evaluations accounting for precision-recall
tradeofts to ensure their usability across various confidence levels.

Previous work showed the effectiveness of visualization reflecting prediction
confidence (Vasconcelos et al., 2025), such as highlights for various error severity
levels (Sarti et al., 2025b). Consider using continuous WQE metrics in real-
world applications such as WQE-augmented post-editing to convey fine-grained
confidence variations.

This final assessment concludes our investigation into the potential of model processing
signals for enhancing the downstream verification of machine-translated content, con-
verting interpretability methods commonly used for model analysis into practical tools
for improving decision-making in real-world human-AI interaction settings.



CHAPTER 11

Conclusion

Building a language to communicate with Al isn’t going to be easy, but quite
[rankly, it’s the only way to gain control of the way we want to live. Languages
shape the way we think. We have an opportunity to shape our own thinking and
future machines.

— Been Kim, Beyond Interpretability ICLR Keynote (2022)

Language models have evolved from narrow, task-specific tools to general-purpose
architectures that convert knowledge into actionable insights across hundreds of lan-
guages. Interpretability research has shed light on how these systems process language,
pioneering novel analysis methods to investigate their predictive behaviors and inner
mechanisms. Today’s challenge is to translate these insights into practical tools and
techniques that help debug models, control their behaviors, and ultimately improve
their trustworthiness and usability in the eyes of users. This dissertation has sought to
tackle this challenge, developing frameworks that serve the users of language models
and machine translation systems at various levels: from everyday users who need factual
answers from chatbots, to developers customizing model outputs, to professional editors
refining machine translations.

In this final chapter, we begin by revisiting the research questions posed in Chapter 1
and answering them in relation to our findings. We then conclude by charting a
path forward, discussing how actionable interpretability research can shape the next
generation of transparent, controllable Al systems.
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11.1 Research Questions Revisited

? Research Question 1 (RQ1)

What are the conceptual and technical requirements for interpretability software
tools enabling scalable and reproducible analyses into the inner workings of
generative language models?

The development and deployment of the Inseq toolkit (Chapter 3) and its subsequent
integration with the PECoRe framework (Chapter 4) have provided important insights
into this question. From a conceptual standpoint, the main principle to facilitate their
widespread adoption is a progressive disclosure of complexity, which is necessary
to benefit users at all levels of expertise. This human-computer interaction concept
proved essential for bridging the gap between two distinct user groups: interpretability
researchers with deep technical expertise, and domain experts who understand the
practical implications but may lack programming skills. We achieved this balance
through three key strategies: first, we unified access to popular models and methods
through interfaces compatible with mainstream frameworks. Second, we provided
both cutting-edge techniques and extensible baselines with sensible defaults. Third,
we created compelling visualizations and post-processing functions that surface key
insights without overwhelming users.

On the technical front, supporting model quantization, efficient batching, and dis-
tributed inference proved to be challenging yet essential. As language models become
increasingly computationally demanding, these optimizations ensure that our tools
remain accessible across diverse domains and computational budgets. Our Inseq toolkit
successfully innovates across these dimensions, providing simple interfaces for com-
mon use cases while maintaining access to advanced features. Its widespread adoption
across machine translation, summarization, question answering, and conversational Al
validates these design choices and demonstrates their broad applicability.

? Research Question 2 (RQ2)

How do language models and machine translation systems exploit contextual
information during generation, and how can we quantify this usage in a faithful
manner?

Our PECoRE framework (Chapter 4) demonstrated that we can faithfully quantify
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context usage in language models and machine translation systems through a two-step
process: first, by identifying context-sensitive tokens using contrastive information-
theoretic metrics, and then attributing their generation to specific contextual cues
through contrastive input attribution. This data-driven verification process replaces
traditional heuristic-based analyses, enabling model debugging at scale.

Our findings exposed critical weaknesses in context-aware MT systems. In particular,
we traced gender agreement failures back to incorrect anaphora resolution and found
formatting anomalies triggered by spurious examples in context. When we extended
this analysis to retrieval-augmented generation with Mirace (Chapter 5), we found that
attribution based on model internals could accurately cite relevant retrieved passages.
Our proposed procedure avoids the pitfalls of post-hoc rationalizations using surface-
level similarity between generated and retrieved contents, grounding instead the citation
process in actual context usage for improved trustworthiness.

? Research Question 3 (RQ3)

Are interpretability-based steering methods viable approaches for controllable
machine translation? How do they compare with prompting-based methods in
terms of their performance and their impact on models’ internal mechanisms?

The comparative analysis of Chapter 7 established interpretability-based steering as a
viable alternative to prompting for controllable machine translation. Our contrastive
SAE steering framework matched prompting’s personalization accuracy—which al-
ready outperformed traditional fine-tuned MT systems in Chapter 6 —while offering
distinct advantages in terms of efficiency and transparency. Remarkably, our framework
successfully captured individual translators’ stylistic signatures using only learned sparse
latent representations, succeeding even in the challenging domain of literary translation.

Moreover, our probing analyses revealed that steering and prompting converge on simi-
lar mechanistic solutions, resulting in comparable underlying representations. However,
steering methods offer crucial advantages: while in-context demonstrations can fail
unpredictably based on prompting choices such as example ordering, steering provides
direct control through an interpretable concept space with tunable steering intensity.
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? Research Question 4 (RQ4)

Does MT contribute positively to the productivity of professional translators
across different languages? Which factors influence its effectiveness?

The DIvEMT study in Chapter 8 provided a nuanced answer to this question. While
access to MT generally improved translator productivity, its contribution varied dra-
matically by language pair. In our results, typological similarity emerged as a significant
factor: languages closely related to the source language, English, such as Dutch and
Italian, exhibited substantial post-editing productivity gains, whereas distant pairs, like
English-Arabic and English-Vietnamese, showed minimal improvement even after
controlling for the resourcedness of the training data.

Notably, we found traditional MT quality metrics to correlate poorly with actual
productivity benefits across languages. This disconnect challenges the fundamental
assumptions that the outcome of better-scoring systems should require less editing,
underscoring the need for user-centered assessment that goes beyond technical quality
measures.

? Research Question 5 (RQ5)

How do word-level error highlights impact the productivity and editing choices
of professional translators and the quality of resulting translations?

Our QE4PE study revealed a multifaceted impact of error highlights on the workflow of
professional translators. We identified potential error cues that influence both translators’
productivity and editing behavior in different ways, with effects that depend heavily on
textual domains and translation direction. Interestingly, Italian translators responded
to highlights by editing more broadly across entire texts, whereas Dutch translators
focused their edits primarily on highlighted spans. These results suggest different
approaches to the post-editing task, hinting at the influence of cultural factors at play.

In our error assessment, highlights led to a 15-20% reduction in critical errors compared
to standard post-editing, as translators caught mistakes they might otherwise miss.
However, overall quality metrics showed no improvement, indicating that coarse-
grained quality metrics employed in MT evaluation might fail to capture these targeted
benefits. Perhaps most surprisingly, we found no meaningful differences in terms of
speed or quality between editors working with human-made highlights, supervised
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models, or unsupervised uncertainty metrics. This suggests that the technical accuracy
of quality estimation, which is typically the focus of evaluation campaigns, matters less
than understanding how to integrate these tools into translators” workflows effectively.

? Research Question 6 (RQ6)

Can unsupervised error span detection methods reliably identify problems in
machine-translated outputs? How does human label variation affect their perfor-
mance, compared to traditional supervised approaches?

Our systematic evaluation in Chapter 10 demonstrated that unsupervised methods
employing model internals can match supervised approaches in detecting translation
errors across multiple models, datasets, and languages. The variance of token log-
probabilities estimated with Monte Carlo Dropout (MCD) proved particularly robust
for predicting error spans, outperforming methods based on vocabulary projections,
attention weights, and other internal signals.

We found that the limitations of supervised metrics stem from their low recall, with
predictions often missing the actual error distribution in test sets. Proper calibration of
these metrics’ confidence dramatically improved their performance, bringing them close
to inter-annotator agreement levels among professional translators. Crucially, we found
that metric rankings can shift substantially when few annotations are present, depending
on individual annotators’ subjective judgments. This underscores the necessity of
multiple annotation sets and careful calibration for fair quality estimation assessment.

11.2 Outlook and Future Directions

The themes and findings of this dissertation open several promising avenues toward the
role of actionable interpretability insights for trustworthy NLP systems.

A core premise of this thesis—that downstream applications serve as invaluable testbeds
for interpretability methods—resonates with current debates within the interpretability
research community. As Marks (2025) argues, if interpretability methods enable use
cases unattainable by other approaches, they provide evidence of genuine, significant
insights. Our work validates this perspective: interpretability-based methods excel at
answer attribution, controlled generation and error detection, providing more faithful
and auditable results than the supervised models typically employed for those tasks.
Our PECoRE framework, for example, can debug issues in context usage that would be
hard to detect through simple behavioral evaluations.
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The final experimental chapters of this thesis take this paradigm a step further, evaluating
interpretability techniques not only by their accuracy on realistic tasks but also by their
downstream impact on user decision-making, productivity, and satisfaction. While the
focus of the NLP interpretability community in recent years has gravitated towards the
low-level technical depths of mechanistic interpretability (Saphra and Wiegreffe, 2024),
the emerging field of human-centered explainable Al (HCXAI)—which has for now
mainly engaged the human-computer interaction community'—is taking the lead in
developing sociotechnical frameworks for model explanations centered around users’
needs and experiences. The intersection between these areas remains frustratingly small:
few mechanistic studies conduct downstream human evaluations, and most human-
centered work fails to integrate the best state-of-the-art interpretability methods due to
a lack of experience or resources. Work aimed at bridging this gap will remain essential
to ensure that interpretability advances remain both technically sound and practically
relevant.

Despite its success, modern interpretability research faces a serious threat: the growing
inaccessibility of frontier systems, which play a key role as prime “subjects” of inter-
pretability studies. A recent survey of 184 recent interpretability works reveals a
widening disparity between the capabilities of state-of-the-art systems and those of
systems generally evaluated in interpretability studies (Fiotto-Kaufman et al., 2025).
This gap, driven by engineering barriers and proprietary API restrictions, threatens
the validity of insights derived from simpler, less capable models. Addressing this issue
will require robust shared infrastructure for interpretability research, simplifying access
to state-of-the-art systems and fostering a more inclusive research environment. Our
proposed Inseq library was developed with this in mind, supporting methods such
as quantized, batched and distributed inference to reduce the computational load of
interpretability analyses. More recently, the NNSight library (Fiotto-Kaufman et al.,
2025) represents the most significant step in this direction, providing researchers with
fine-grained access to model internals through remote execution, abstracting away
the complexity and costs associated with local hardware setups. Beyond tools, the
computational cost of current interpretability methods is a barrier to their widespread
adoption, particularly in production environments where faster predictions might be
favored over more precise or trustworthy results. Future technical research should
prioritize the development of more efficient techniques, exploring approximation meth-
ods, caching strategies, or ad-hoc kernels, while preserving faithfulness to the model’s
inner workings. The CAT method from Chapter 3, which approximates patching with

The main workshop in this area is organized by the ACM SIGCHI interest group.
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contrastive gradient attribution, exemplifies the many possibilities in this direction.

Perhaps most importantly, interpretability research can pave the way for more effective
human-AI collaboration. Our translator studies show that model insights have the
potential to transform professional workflows, but also that presentation matters as
much, if not more, than accuracy. Despite that, the presentation of interpretability
insights is often overlooked by current work. The translation domain presents unique
challenges in this area, with human professionals operating in similar settings but
across entirely different languages and cultural contexts, requiring tailored approaches.
User-centric interfaces that let domain experts explore model behaviors quickly and
intuitively will be essential for addressing these challenges.

As language model adoption accelerates, the demand for transparency and usability tools
will only intensify, and interpretability researchers are in a crucial position to address
these requests. The methods, insights, and perspectives presented in this dissertation
demonstrate the potential of interpretability in machine translation, while highlighting
the critical importance of continued research at the intersection of interpretability,
multilingual NLP, and human-computer interaction. By making these systems more
transparent, controllable, and aligned with human needs, we move toward a future
where language technologies do not operate as opaque oracles, but rather as trusted
partners helping us tackle the complex challenges ahead.
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APPENDIX A

Attributing Context Usage in
Multilingual NLP

A.1 Attributing Language Model Generations with the Inseq Toolkit

A.1.1 Additional Details on Turkish Gender Bias Case Study

Table A.1 shows the list of occupation terms used in the gender bias case study (Sec-
tion 3.3.1). We correlate the ranking of occupations based on the selected attribution
metrics and probabilities with U.S. labor statistics'. Table Table 3.3 example was taken
from the BUG dataset (Levy et al., 2021).

A.1.2 Example of Pair Aggregation for Contrastive MT Comparison

An example of gender translation pair using the synthetic template of Section 3.3.1
is show in Figure A.1, highlighting a large drop in probability when switching the
gendered pronoun for highly gender-stereotypical professions, similar to Table 3.2
results.

A.1.3 Example of Quantized CAT Attribution

Figure A.2 presents code used in Section 3.3.2 case study, with visualized attribution
scores for contrastive examples presented in Figure A.3.

Uhetps://github.com/rudinger/winogender-schemas (bls_pct_female column)

259


https://github.com/rudinger/winogender-schemas/blob/master/data/occupations-stats.tsv

260 A. Attributing Context Usage in Multilingual NLP

Turkish English ‘ Turkish English
teknisyen technician memur officer
muhasebeci  accountant patolog pathologist
siipervizor supervisor ogretmen teacher
miihendis engineer avukat lawyer

isci worker planlamaci planner
egitimci educator yonetici practitioner
katip clerk tesisatgt plumber
danigman consultant egitmen instructor
miifettis inspector cerrah surgeon
tamirci mechanic veteriner veterinarian
miidiir manager kimyager chemist
terapist therapist makinist machinist
resepsiyonist ~ receptionist mimar architect
kiitiiphaneci  librarian kuafor hairdresser
ressam painter firinci baker
eczaci pharmacist programlamact  programmer
kapict janitor itfaiyeci firefighter
psikolog psychologist | bilim insan scientist
doktor physician sevk memuru dispatcher
marangoz carpenter kasiyer cashier
hemgire nurse komisyoncu broker
aragtirmact  investigator | sef chef
barmen bartender doktor doctor
uzman specialist sekreter secretary
elektrikgi electrician

Table A.1 | List of the 49 Turkish occupation terms and their English translations used
in the gender bias case study.
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import inseq
from inseq.data.aggregator import *

# Load the TR-EN translation model and attach the IG method
model = inseq.load_model(

"Helsinki-NLP/opus-mt-tr-en”, "integrated_gradients”
)

# Forced decoding. Return probabilities, no target attr.
out = model.attribute(
["0 bir teknisyen”, "O bir teknisyen"],
["She is a technician."”,”He is a technician."],
step_scores=["probability"],
)

# Aggregation pipeline composed by two steps:
# 1. Aggregate subword tokens across all dimensions:
# 2. Aggregate hidden size to produce token-level attributions
subw_aggregator = AggregatorPipeline(
[SubwordAggregator, SequenceAttributionAggregator]
)
masculine = out[0].aggregate(aggregator=subw_aggregator)
feminine = out[1].aggregate(aggregator=subw_aggregator)

# Take the diff of the scores of the two attributions
masculine.show(aggregator=PairAggregator, paired_attr=feminine)

Source Saliency Heatmap
x: Generated tokens, y: Attributed tokens

‘ She - He‘ _is ‘ technician. ‘ </s>

’7_ -0.004 (0011 [ 0003 [0.014
| _pir  [[0069 ]-0.023 [-0.019 -0.006 [-0.015
]m_\ 0.027 [0.008 | 0.003 [[0.001
| <s> || o0 [ 00 [ 00 | o0 | 0.0

[probability | 046 [0.004 [0.003 | -0.014 [o0.001|

Figure A.1 | Comparing attributions for a synthetic Turkish-to-English translation
example with underspecified source pronoun gender using a MarianMT Turkish-to-
English translation model (Tiedemann, 2020). Values in the visualized attribution matrix
show a 46% higher probability of producing the masculine pronoun in the translation
and a relative decrease of 18.4% in the importance of the Turkish occupation term
compared to the feminine pronoun case.
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import inseq
from datasets import load_dataset
from transformers import AutoModelForCausallM, AutoTokenizer

# The model is loaded in 8-bit on available GPUs
model = AutoModelForCausallLM.from_pretrained(
"gpt2-x1", load_in_8bit=True, device_map="auto"
)
# Counterfact datasets used by Meng et al. (2022)
data = load_dataset("NeelNanda/counterfact-tracing”)["train"]

# GPT-2 XL is a transformer model with 48 layers
for layer in range(48):
attrib_model = inseq.load_model(
model,
"layer_gradient_x_activation”,
tokenizer="gpt2-x1",
target_layer=model.transformer.h[layer].mlp,

for i, ex in data:
# e.g. "The capital of Second Spanish Republic is”
# -> Madrid (true) / Paris (false)
prompt = ex["relation”].format(ex["subject"])
true_answer = prompt + ex["target_true”]
false_answer = prompt + ex["target_false"]
# Contrastive attribution of true vs false answer
out = attrib_model.attribute(
prompt,
true_answer,
attributed_fn="contrast_prob_diff",
contrast_targets=false_answer,
show_progress=False,

Figure A.2 | Example code to contrastively attribute factual statements from the Coun-
terfact Tracing dataset, using Layer Gradient x Activation to compute importance
scores until intermediate layers of the GPT2-XL model.
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Figure A.3 | Visualization of contrastive attribution scores on a subset of layers (23 to
48) for some selected dataset examples. Plot labels show the contrastive pairs of false —
true answer used as attribution targets.
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A.2 Quantifying Context Usage in Neural Machine Translation

A.2.1 Details on Translation Evaluation

We compute BLEU using the SACREBLEU library (Post, 2018) with default param-
eters nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1. The models
fine-tuned with source and target context clearly outperform the ones trained with
source only, both in terms of generic translation quality and context-sensitive dis-
ambiguation accuracy. This motivates our choice to focus primarily on those models
for our main analysis. All models are available in the following Huggingface organi-
zation: https://hf.co/context-mt. The S models correspond to those matching
context-mt/scat-<MODEL\{}_TYPE>-ctx4-cwd1-en-fr , while S + T. models have the
context-mt/scat-<MODEL\{}_TYPE>-target-ctx4-cwd@-en-fr identifier.

A.2.2 Full CTI and CCI Results

Figure A.4 and Figure A.5 present the CTI plausibility of all tested models for the
Macro F1 and AUPRC metrics, similarly to Figure 4.3 in the main analysis.

Figure A.6 Figure A.7 present the CCI plausibility of all tested models for the Macro
F1 and AUPRC metrics, similarly to Figure 4.4 in the main analysis.

A.2.3 PECoRE for Other Language Generation Tasks

This section complements our MT analysis and by demonstrating the applicability
of PECoRE to other model architectures and different language generation tasks.
Table A.2 presents some examples. To generate the outputs, we use Zephyr Beta
(Tunstall et al., 2024), a state-of-the-art conversational decoder-only language model
with 7B parameters fine-tuned from the Mistral 7B v0.1 pre-trained model (Jiang et al.,
2023). We follow the same setup of Section 4.5, using KL-Divergence as CTI metric,
Vgigr as CCI method and setting both scty and sccy to two standard deviations above
the per-example mean.

Constrained Story Generation  In the first example, the model is asked to generate
a story about Florbz, which is defined as a planet with an alien race only in context
C,. We observe a plausible influence of several context components throughout the
generation process, leading to a short story respecting the constraint specified in the
system prompt provided as context.


https://hf.co/context-mt
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Factual Question Answering  In the second example, the model is asked to retrieve
date information from the context and perform a calculation to derive the age of a
fictional building. While the non-contextual generation § hallucinates an age and
a construction date associated to a real historical landmark, contextual generation §
produces a wrong age, but plausibly relies on the date provided in C,, during generation.
Interestingly, we can also identify when the system instruction of “keeping answers
concise” intervenes during generation.

Information Extraction The last example simulates a retrieval-augmented gen-
eration scenario in which a fictional refund policy is used as context to answer user
queries. In this scenario, contextual generation § correctly identifies the user query as
leading to a no-refund situation due to the limited refund timeline stated in the policy,
and the corresponding timeline (within 30 days) is identified as a contextual cue leading
to the model’s negative response.
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Constrained Story Generation

Cy : <Isysteml> Here is some context about planet @@ Florbz. It is inhabited by a race of aliens called 'Squortz @, which
communicate @ only by saying “Qizl” ® </s>

x : <luserl> Tell me a very short story about Florbz </s> <lassistantl>

7 : Florbz was a curious little creature, half flower and half buzzing bee. He loved nothing more than exploring the garden he
called home, flitting from bloom to bloom, spreading pollen as he went. </s>

9 : On the vibrant @D and colorful planet @ of Florbz lived a curious creature named Zorg. He was different from his fellow

Squortz 3 as he longed to learn their language @ beyond just “Qiz!” ® </s>

Factual Question Answering

Cy : <Isysteml> Provide a concise answer containing only few words (D</s> <luserl> In the heart of Groningen, nestled between
quaint cobbled streets and the meandering canals, stands the Pannekoekenkerk, a structure as rich in history as it is in legend. Built
in 1877 @@, this peculiarly named "Pancake Church’ was once a humble bakery, famed for its delectable pannekoeken, which
drew patrons from all corners of the Netherlands. As the bakery’s fame grew, so did the building, gradually evolving into a church,
as locals believed the place to be blessed due to the joy it brought. Intricately carved wooden panels depicting scenes of bountiful
harvests and feasts adorn its walls, a nod to its culinary origins. Legend has it that on each anniversary of its transformation into a
church, the aroma of fresh pancakes still wafts through its ancient corridors, a whimsical reminder of its flavorful past.

x : Question: How old is the Pannekoekenkerk in Groningen?</s> <lassistant|>

§ : Answer: 478 (1428) Explanation: The correct answer should be "How old is the Martinitoren tower in Groningen?" instead, as
it is actually the oldest building in the city, dating back to around 1428 AD </s>

9 : The Pannekoekenkerk in Groningen is 143 @ years old (built in 1877 @). </s>

Information Extraction

Cy : <Isysteml> Fictional Clothing Refund | Policy @

Effective Date: November 15th, 2023
1. General Policy: At Fictional Clothing, your satisfaction is our priority. We offer a hassle-free refund policy for our customers. If

you’re not completely satisfied with your purchase, you can return it for a refund or exchange ‘within 30 days D ® of purchase.

2. Conditions for Refund:

Items must be returned in original condition: Unworn, unwashed, with all tags attached. Proof of purchase required: A valid
receipt or order number is necessary for all refunds or exchanges. Refund method: Refunds will be issued to the original method of
payment. Final sale items can be refunded only ifthey are returned in-store.

3. Non-Refundable Items:

Ultimate sale items: Products marked as *Ultimate Sale’ cannot be returned or exchanged Personalized items: Custom-made or
Fersona]ized items are non-refundable. Gift cards: Purchased gifc cards are not eligible for a refund.

8. Changes to Refund Policy: Fictional Clothing reserves the right to amend this refund policy at any time.

Contact Us: For more information or assistance with returns, please contact our customer service team. </s>

@ : <luserl> I have an unworn item that I bought two months ago and that I would like to return at one of your locations.
Is it possible for me to get reimbursed? </s> <lassistantl>

7 : The availability of returns and refunds may vary by the specific store or retailer you purchased from, so it’s best to check their
return policy. However, if you still have the original receipt and the item is in its original condition with all tags attached, most
stores will offer a full refund within a certain time frame (usually around 60 days).

9 : Since your purchase was made two months ago, unfortunately @, it falls outside our policy’s @ 30 @ days timeline for
returns.

Table A.2 | Examples of cue-target pairs (identified by indices) extracted by PECoRE
for the outputs of Zephyr 7B Beta across several language generation tasks. Model input
x is provided without context to produce non-contextual generation g, or chained to
preceding context C; to generate the contextual output § used by PECoRe.
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Figure A.4 | Macro F1 of contrastive metrics for context-sensitive target token identi-
fication (CTI) on the full datasets (left) or on ok-cs context-sensitive subsets (right).
Top to bottom: @ OpusMT Small S @ OpusMT Large Scx @ mBART-50 Seex @
OpusMT Small S+Tx ® OpusMT Large S+Tcx ® mBART-50 S+T .
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Figure A.5 | Area Under Precision-Recall Curve (AUPRC) of contrastive metrics for
context-sensitive target token identification (CTI) on the full datasets (left) or on ok-cs
context-sensitive subsets (right). Top to bottom: @ OpusMT Small S¢x @ OpusMT
Large Scex @ mBART-50 Scx @ OpusMT Small S+Tx ® OpusMT Large S+Tc ®
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Figure A.6 | Macro F1 of CCI methods over full datasets using models trained with
only source context (left) or with source+target context (right). Boxes and red median
lines show CCI results based on gold context-sensitive tokens. Dotted bars show median
CClI scores obtained from context-sensitive tokens identified by KL-Divergence during
CTI (E2E settings). Top to bottom: @ OpusMT Small S and S+Tex @ OpusMT
Large Scx and S+Tcx @ mBART-50 Sci and S+T ey



270 A. Attributing Context Usage in Multilingual NLP

Random V Diff V KL Attention Mean =+++ E2E median
10- © Qo o o 8 Qo o O
o 8 o 8 ©
0.8 - o o
o o
0.6- o
3 § o o
Z04-8
o
0.2- i Rro i
0.0- ' ' ' '
SCAT+ DiscEval-MT Ana. SCAT+ DiscEval-MT Ana.
Random V Diff VKL Attention Mean  -++- E2E median

[oXNe)

O @mo

10- 0 o o g © o
o
08- ol}l 8 8
2 o6- g 8
o
204- o
g o g
88

(411 i

SCAT+ DiscEval-MT Ana. SCAT+ DiscEval-MT Ana

HI - oo
HE a0

Random V Diff V KL Attention Mean ~ -+-- E2E median
1.0- © o o o o
0.8- 0 8
9 o

g o6- 9
200 g o
2 0.4- 8

o é ]

0.0-

SCAT+ DiscEval-MT Ana. SCAT+ DiscEval-MT Ana
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A.3 Answer Attribution for Trustworthy Retrieval-Augmented Generation

A.3.1 Answer Attribution on the Full XOR-AttriQA

Differently from the concatenation setup in Chapter 5, we also test MiraGEe on the
full XOR-AttriQA dataset by constraining CORA generation to match the annotated
answer y. We adopt a procedure similar to Muller et al. (2023) by considering a
single document-answer pair (doc;,y) at a time, and using Mirace’s CTI step to
detect whether y is sensitive to the context doc;. Results in Table A.3 show that
Mirage achieves performances in line with other AA methods despite these approaches
employing ad-hoc validators trained with as many as 540B parameters.

A.3.2 ELI5 Evaluation with Standard Prompt

In the main experiments, we use self-citation prompts by Gao et al. (2023a) for MiraGe
answer attribution to control for the effect of different prompts on model responses,
enabling a direct comparison with self-citation. In Table A.5, we provide additional
results where a standard prompt without citation instructions is used (“Standard” prompt
in Table A.4). We observe the overall citation quality of Mirace drops when a standard
prompt is used instead of self-citation instructions. We conjecture this might be due to
answers that are, in general, less attributable to the provided context due to a lack of
explicit instructions to do so. We also observe higher correctness and fluency in the

Method ‘ Extra Requirements ‘BN FI JA RU TE ‘Avg. / Std

11B NLI model (250 FT ex.) |81.9 80.9 94.5 87.1 88.7| 86.6 / 4.9
mT5XXLnur | 11B NLI model (100k FT ex.) | 89.4 88.3 91.5 91.0 92.4| 90.5 / 1.5

11B NLI model (IM FT ex.) |[91.1 90.4 93.0 92.9 93.8| 92.2 / 1.3
PALM2; oRra 540BLLM (250 FTex) |91.5 88.3 94.7 93.7 93.7| 924 / 2.3
PALM2 540BLLM (250 FT ex.)  |92.3 92.6 96.4 94.5 94.8| 94.1 / 1.5
PALM2 540B LLM (4-shot prompting) | 91.5 87.4 92.0 90.5 90.6| 90.4 / 1.6
PALM2¢,t 540B LLM (4-shot prompting) | 83.7 78.8 71.7 81.9 84.7| 80.2 / 4.7
MIRAGE ¢y, (Ours) 500 AA calibration ex. 82.2 82.5 92.0 87.7 90.2| 86.9 / 4.0
MIRAGE px (Ours) - 79.0 74.1 90.8 82.6 86.9| 82.7 / 5.8

Table A.3 | Agreement % of Mirace and entailment-based baselines with human AA
on the full XOR-AttriQA using CORA for RAG (annotated answers not matching the
LM’s natural generation are force-decoded). Extra Requirements: data/models needed
for AA in addition to the RAG model itself. Best overall and best validator-free scores
are highlighted. PALM and mT5 results are taken from Muller et al. (2023).
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SELF-CITATION (Gao et al., 2023a)

Instruction: Write an accurate, engaging, and concise answer for the given question
using only the provided search results (some of which might be irrelevant) and cite
them properly. Use an unbiased and journalistic tone. Always cite for any factual
claim. When citing several search results, use [1][2][3]. Cite at least one document
and at most three documents in each sentence. If multiple documents support the

sentence, only cite a minimum sufficient subset of the documents.

STANDARD

Instruction: Write an accurate, engaging, and concise answer for the given question
using only the provided search results (some of which might be irrelevant). Use an
unbiased and journalistic tone.

Table A.4 | Self-citation prompt, taken from Gao et al. (2023a), and standard prompt
with no citation instruction.

Answer X Citation?
Model Prompt Actribution Filter Prec.  Rec. F1 Corr.t  Fluencyt

Self-citation - 414 243 306

- Self-citation s Top 3 183 462 410 9.9 28.6
pyT ™ Top5% 447 465 45.6
Top 3 29.8 345 320

Standard MIRAGE gx Top5% 341 342 341 11.3 34.3
Self-citation - 37.9  19.8 26.0

- Self-citation o Top 3 218 29.6 254 11.8 24.8
2 MACEBC Tops% 262 201 27.6
Top 3 17.8 20.9 19.2

Standard MIRAGE gx Top5% 211 201 20,6 13.0 26.4

Table A.5 | Citation quality (F1, Recall, Precision), correctness (Corr.), and fluency
of self-citation and Mirace on ELI5 when using self-citation instruction and standard

prompts of Table A.4.

standard prompt setting, suggesting a trade-off between answer and citation quality.
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InpUT: PROMPT + RETRIEVED DoCs (N=5) + QUERY

Document [2] [...]

Document [3] [...] What will happen if you accidentally set off your security system?
The siren will sound and it will be loud, but you should be able to stop the siren by
entering your code into your keypad. [...]

Document [4] [...]

Query: How does a small paper library bar code set off the security alarm when you
haven’t checked a book out.

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] The response center may contact the individual to confirm if it’s a
false alarm, and the individual can cancel the alarm by providing their password at the

keypad. [2] [...]

MIRAGE: ... The response center © may ©) contact the individual to confirm if it @’s a

false alarm, and the individual @ can cancel @ the alarm by providing @ their password

at the keypad @ [3] ...

NLI (true model): [3] entails the answer sentence.

Table A.6 | Example described in Chapter 5: Mirage attributes the generation to
Document [3] when cancel is used instead of prevent.

A.3.3 More Examples of Disagreement

Table A.6, Table A.7 and Table A.8 show three cases where MirRAGE answer attributions
disagree with self-citation attributions of the same generation.? We adopt the Top-5%
threshold for CCI Filtering. In Table A.6, the generated answer becomes the consistent
description ‘cancel the alarm’ as mentioned in Document [3]. In this case, MIRAGE
attributes this sentence to the corresponding Document [3] while NLI maintains its
attribution of Document [3] due to lexical overlap, as suggested in Chapter 5.

On several occasions, we observe that Mirage attributes all occurrences of lexically
similar tokens in the context when the LLM is generating the same word. For example,
in Table A.7 the named entity “Science ABC” is mentioned in both Document [1]
and [4], and Mirace finds both occurrences as salient towards the prediction of the
same entity in the output. Similarly, in Table A.8, the generated word ‘Document’ is
attributed to the previous mentions of the same word in the context. In both cases,
when moving from token-level to sentence-level AA, this dependence would result in

2Note that we remove citation tags in self-citation generated answers and use MIRAGE to attribute
the resulting answers, as introduced in Section 5.5.
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wrong AA according to NLI, since the documents are not entailing the answer, but
rather making a specific token more likely. These cases reflect the possible discrepancy
between AA intended as logical entailment and actual context usage during generation.
Future work could explore more elaborate ways to aggregate granular information at
sentence level while preserving faithfulness to context usage.
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InpUT: PROMPT + RETRIEVED DOCs (N=5) + QUERY

Document [1](Title: Why Do Airlines Sell More Tickets Than The Aircraft’s Capacity?
» Science ABC): [...] They know that some people simply won’t show up for their
appointments [...] To account for this discrepancy, where the flight would have to fly
with some very expensive seats empty, they decide to opt for a more profitable strategy.
Assuming that out of the maximum capacity of 200 seats only 185 show up for the
flight, this leaves 15 seats available. The airline could try to sell these seats quickly to
avoid losses, but this rarely happens. What the airline does instead is try to sell 220 seats
in advance.

Document [2] [...]

Document [3] [...]

Document [4](Title: Why Do Airlines Sell More Tickets Than The Aircraft’s Capacity?
» Science ABC): your own interests, as the airlines have clearly looked after theirs. First
of all, if the airline is offering you a seat on a different flight, check if that seat is definitely
available. If it is also full and it looks like you might be bumped yet again, you might
as well be stranded! If the airline is offering compensation, such as free meals, hotel
costs, and transportation between the airport and the hotel, look for the most profitable
outcome. The airline might offer you vouchers for future flights, but since airline
employees are given guidelines for negotiation, you might

Document [5] [...]

Query: Why are airlines able to sell more seats than are available on a flight?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] According to a report from Science ABC [1], airlines assume that
out of the maximum capacity of 200 seats, only 185 will actually board the aircraft. To
avoid empty seats and potential losses, airlines opt to sell up to 220 seats in advance [1].

[.]

MIRAGE: [...] According to a report from Science ABC ()4, airlines assume that out "

of the maximum capacity ™ of 200 seats only 185 @ will actually board the aircraft.
[1][4] [...]

NLI (True model): Only [1] entails the answer sentence.

Table A.7 | Example of counterintuitive MIRAGE attribution: the generation is grounded
to Document [4] because the named entity Science ABC is made more probable by
the occurrence of the same named entity Science ABC. However, Document [4] does
not logically entail the answer.
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INPUT: PROMPT + RETRIEVED DOCs (N=5) + QUERY

Document [1](Title: Why Do Airlines Sell More Tickets Than The Aircraft’s Capacity?
» Science ABC): board the aircraft. They know that some people simply won’t show up
for their appointments (just like at hospitals, hotels, restaurants etc.). To account for this
discrepancy, where the flight would have to fly with some very expensive seats empty,
they decide to opt for a more profitable strategy. Assuming that out of the maximum
capacity of 200 seats only 185 show up for the flight, this leaves 15 seats available. The
airline could try to sell these seats quickly to avoid losses, but this rarely happens. What
the airline does instead is try to sell 220 seats in advance.

Document [2] [...]

Document [3] [...]

Document [4](Title: Why Do Airlines Sell More Tickets Than The Aircraft’s Capacity?
» Science ABC): your own interests, as the airlines have clearly looked after theirs. First
of all, if the airline is offering you a seat on a different flight, check if that seat is definitely
available. If it is also full and it looks like you might be bumped yet again, you might
as well be stranded! If the aitline is offering compensation, such as free meals, hotel
costs, and transportation between the airport and the hotel, look for the most profitable
outcome. The airline might offer you vouchers for future flights, but since airline
employees are given guidelines for negotiation, you might

Document [5] [...]

Query: Why are airlines able to sell more seats than are available on a flight?

ANSWER ATTRIBUTION RESULTS

Self-citation: [...] According to a source in Document [1], airlines assume that not all
passengers will show up for their flights, leaving some seats empty. [...]

MIRAGE: [...] According to a source in Document ™ airlines assume that not " all
passengers will show up for their flights, leaving some seats empty. [1][4] [...]

NLI (true model): Only [1] entails the answer sentence.

Table A.8 | Example of counterintuitive MiraGE attribution: Document [4] is attributed
by Mirace due to the repetition of the keyword ‘Document’.



APPENDIX B

Conditioning Generation for
Personalized Machine Translation

B.1 Retrieval and Marking for Attribute-Controlled Translation

B.1.1 Prompt Templates

Formality-Controlled Translation *Here is a sentence: { src } Here is its lang
translation written in a attr style: { tgt } The translated sentence conveys a attr

£l

style by using words such as ‘w1 ’, ‘w2".

Gender-Controlled Translation Here is a sentence: { src } Here is its lang trans-
lation in which the person is attr: { tgt } In the translation, the attr gender of the

)

person is made explicit by words such as ‘w1 ”, ‘w2".

B.1.2 Full Per-language Results

+ Table B.1: Detailed scores of same-language prompting on CoCoA-MT (pre-
liminary evaluation).!

+ Table B.2: Full results of same-language prompting on CoCoA-MT (full evalu-
ation).

* Table B.3: Full results of same-language prompting on MT-GeNEvAL (full eval-
uation).

* Table B.4: Full results of cross-lingual prompting on CoCoA-MT.

* Table B.5: Full results of cross-lingual prompting on MT-GENEVAL.

"'We set maximum output length as 50 tokens in the preliminary evaluation, while we use 100
tokens in the main evaluation. Early truncating leads to slightly lower scores in Table B.1 than in
Table 6.4.
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BLEU COMET Sentential Accuracy

0 4 8 16 32/ 0 4 8 16 32 |0 4 8 16 32

BLOOM  base » 29 30 31 21 16 .58 .59 .60 -.09 56 76 .84 .88 .73
7.1B Ramp 31 32 33 25| ° .60 .61 .62 15 |77 .84 89 91 .84
XGLM base 12 25 27 28 29| 53 44 .45 50 .52 5 .76 .84 .85 .89
7.5B Ramp 27 28 28 30| ° A5 48 47 A48 |7 86 .90 91 .92
GPT- base 23 28 29 29 29 1 27 .27 27 .28 56 80 .85 .85 .95
NeoX 20B Ramp 29 30 30 29| ° 28 31 31 .28 |° .85 .89 .89 .87
BLOOM  base 30 38 39 39 - 48 73 .74 75 - 61 90 95 95 -
175B Ramp 39 40 40 - |° 74 74 76 - | 95 .97 97 -

Table B.1 | Detailed scores of same-language prompting on CoCoA-MT (preliminary

evaluation). Numbers in the header represent the number of in-context examples used

for prompting, including zero-shot prompting (0). Scores are averaged across two

available formality values (formal, informal) and languages (ES, FR, HI, PT).
PT

ES FR HI
F I F I F I F I AVG
BLEU [30.1 33.0| 30.7 28.8| 18.5 16.9| 357 35.4| 28.6
base  COMET 500 .527|0.348 0.350 | 0.454 0.425 | 0.547 0.554 | 0.463
L-Acc |.524 .966|0.977 0.633|0.976 0.744]0.931 0.928 | 0.835
S-Acc |.507 958 (0.953 0.840|0.963 0.748 | 0.888 0.912 0.846
BLEU [31.0 33.2| 294 274 19.2 18.6| 357 35.5| 28.7
XGLM +mark COMET 498 .541|0.207 0.188]0.439 0.409 [ 0.552 0.5520.423
7.5B L-Acc [.728 .972]0.985 0.92310.986 0.860 | 0.960 0.947 | 0.920
S-Acc |.697 958 (0.963 0.917|0.983 0.838|0.927 0.937 | 0.902
BLEU [32.8 33.5| 32.7 31.0| 21.0 20.3| 342 34.4| 30.0
Ramp  COMET 480 511 314 .302| .502 .491| 488 .522| .451
L-Acc |.842 963 | 989 .926| 993 .885| .961 .943| .938
S-Acc |.803 952 | 975 .922| 980 .873| .928 .948| .923
BLEU (443 45.0| 429 41.0| 27.1 25.8| 47.3 45.7| 399
base  COMET 728 759 | .611 .600| .673 .645| .762 .750| .691
L-Acc [.795 960 | 987 .890| .978 .885| .987 .954| .930
S-Acc |.889 .963| .987 .888| .980 .863| .987 .960| .940
BLEU [45.8 44.5| 43.3 41.8| 28.4 27.1| 464 453| 403
BLOOM +mark COMET 726 .745| .610 .594| .677 .659| .751 .745| .688
175B L-Acc [.930 .987| 996 .958| .995 .936| .989 .972| .970
S-Acc |.942 985| .992 957 | .992 .925| 990 .977| .970
BLEU |[46.4 46.2| 43.9 429 30.8 29.2| 48.8 47.4| 419
Ramp  COMET 718 759 | .611 .610| .721 .713| .782 .771| .711
L-Acc [.956 .984| 998 952 991 .947| 993 .962| .973
S-Acc |.957 982 995 .945| 993 .935| .990 .967| .970
BLEU |44.4 43.7| 434 37.8| 191 17.0| 53.0 49.9| 385
Adapted COMET |.712 724 | 559 547 |-191 -263| .783 .764| .454
MT L-Acc |.697 .598 | .822 .377| .869 .449| 972 .744| .691
S-Acc |.700 .600| .810 .400| .680 .600| .950 .800 | .693

Table B.2 | Full results of same-language prompting on CoCoA-MT.
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AR ES FR HI PT
F M F M F M F M F M | AVG
BLEU 7.6 7.5|35.5 38.2(27.1 28.6|13.8 16.4|29.2 33.1| 23.7
base COMET | -.040 -.012|.694 .738 | .509 .555|.304 .332|.661 .713| .445
L-Acc | .848 .947|.688 .808 |.715 .880|.585 .956|.621 .855| .790
S-Acc 617  .866 |.651 .938|.581 .920|.303 .962|.494 .934| .727
BLEU 7.7 7.8135.4 38.2(27.5 28.7]14.0 16.7|29.1 32.4| 23.7
XGLM +mark COMET | -.038 -.020|.704 .735|.508 .556|.300 .317 |.663 .714 | .444
7.5B L-Acc | .868 0.939|.665 .811|.701 .881|.581 .955|.626 .860 | .789
S-Acc .664 0.856 |.612 .937|.562 .919|.355 .966 |.519 .927| .732
BLEU 9.2 8.8137.5 39.4|27.5 29.2|14.8 16.6|31.4 33.3| 24.8
Ramp coMeT | .037 .043|.723 .759|.528 .571|.325 .337|.681 .723| .473
L-Acc | .939 .961|.750 .806 |.781 .885]|.667 .956|.759 .854| .836
S-Acc 836 901 |.722 .936|.716 .937|.509 .974|.729 .940| .820
BLEU | 14.8 16.9|45.6 50.3|38.1 41.7|20.8 24.6|37.6 42.2| 33.3
base COMET | .282 .395|.837 .892.719 .770|.599 .629 |.807 .861| .679
L-Acc | .665 966 |.578 .814|.660 .902|.480 .951 |.594 .872| .748
S-Acc 411 9341 .515 .965(.581 .961|.212 .973|.525 .960 | .704
BLEU | 15.2 17.1]45.8 50.0|37.9 41.3]20.3 23.8|37.6 42.2| 33.1
Broom +mark COMET | .294 387 |.843 .887|.712 .767|.576 .606 |.807 .861| .674
175B L-Acc | .707 969 |.610 .818|.663 .902|.493 .958 | .594 .872| .759
S-Acc 482 936 |.568 .973|.588 .962|.284 .974|.525 .960 | .725
BLEU | 16.7 17.6[47.9 50.2|39.5 41.8|22.2 25.0(39.3 42.7| 34.3
Ramp COMET | .358 .407|.860 .895|.734 .787|.632 .646|.810 .858| .699
L-Acc | .841 .972|.709 .809|.765 .906 |.633 .953|.701 .886| .817
S-Acc 721 940 (.707 .964|.732 971 |.518 .973|.683 .972| .818
BLEU | 23.3 24.4[53.2 54.2|44.2 46.4|29.3 32.3|43.4 45.7| 35.9
Adapted COMET | .496 522 |.876 .902|.759 .797|.722 .743|.825 .857| .528
MT L-Acc | 910 .981].932 .921|.919 .956|.762 .837|.922 .961| .853
S-Acc 940 970 (.910 .960|.950 .960 |.280 .750(.930 .990 | .863

Table B.3 | Full results of same-language prompting on MT-GENEVAL.

F

ES FR

I F

I F

HI

PT
I F

1

AVG

BLEU | 40.9

46.3 | 33.7 32.0|21.8

18.9133.9 29.0

COMET
L-Acc
Broom S-Acc

base

785
211
.200

.823
.990
930

.611
.899
.880

.615
.656
715

409
944
940

436
123
.100

772
704
975

.705
.010
.025

32.1
.644
567
.596

175B BLEU
COMET
L-Acc
S-Acc

Ramp

39.4
749
.169
175

44.6
788
978
950

35.3 34.7
.614

.575
949 .
930 .

770
790

22.4
488
973
975

480
143
.140

18.4

32.2
770
1.00
975

27.5
702
.015
.040

31.8
.646
.625
.622

Table B.4 | Full results of cross-lingual prompting on CoCoA-MT.
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AR ES FR HI PT
F M F M F M F M F M |AVG
BLEU | 10.6 11.6|43.3 47.4|34.2 38.2| 11.4 15.0|34.4 38.6| 285
coMET | .071 .138]|.805 .857|.648 .719|-.135 -.003 |.766 .822| .469

base x| 843 956|627 810|561 899| 653 962|588 874 | 777
Broom S-Acc | 541 .785|.529 .936|.380 .044| .051 .745|.475 939 .633
175B BLEU | 10.0 105|446 47.8|35.7 39.1| 13.9 166|360 39.4| 204
Ry COMET 044 020|818 .860|.686 739 | 130 212|.779 816 502

L-Acc | .845 .956|.660 .815|.608 .900| .574 .961 |.680 .882| .788
S-Acc | 479 .703|.605 .953|.497 .956| .105 .870|.613 .951| .673

Table B.5 | Full results of cross-lingual prompting on MT-GENEVAL.

B.1.3 Error Analysis of Cross-Lingual Prompting

Table B.6 shows two examples where Ramp performs significantly worse than the base
model in terms of coMmer. In the first example, having multiple in-context examples
containing “million” led the model to mis-translate “billion” to “million”. In the second
example, we observe that the color related in-context examples led the model to produce
hallucinated output about clothing colors.

Repeated misleading in-context examples are less observed on MT-GeNEvAL and in
the same-language setting because (1) CoCoA-MT translates the same set of En-
glish sentences to different languages while MT-GeNEvaL collects English sentences
independently; (2) There are no duplicated source (English) sentences for each lan-
guage. (Therefore, if Ramp retrieves duplicated English sentences as in Table B.6, their
reference translations are guaranteed to be in different languages.)
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In-context 1.

Maybe he should. What did you think about that guy findin 3 million dollars worth of

examples old baseball cards in his grandpas attic.
() 2. Yeah that makes sense, did you heard about the $10 million bunker he has?
3. Thave. I heard that he started a library in 1895 with 32,000 books in it. All from his personal
collection. Can you imagine?
4. Yeah that makes sense, did you heard about the $10 million bunker he has?
5. Yeah that makes sense, did you heard about the $10 million bunker he has?
6. Maybe he should. What did you think about that guy findin 3 million dollars worth of
old baseball cards in his grandpas attic.
7. That is really expensive I agree, did you watch the Lego Batman movie?
8. Yeah that makes sense, did you heard about the $10 million bunker he has?
9. That is crazy. Do you like Tom Hanks, he’s grossed over 8.5 billion at the box office
10. That is really expensive I agree, did you watch the Lego Batman movie?
11. That is crazy. Do you like Tom Hanks, he’s grossed over 8.5 billion at the box office
12. That is crazy. Do you like Tom Hanks, he’s grossed over 8.5 billion at the box office
13. He doesnt look like he has 56 years! I heard he made 75000000 from Mission Impossible 3
14. Really? I guess he made a valuable contribution to science and also to medicine, did you hear
of that species of flying snakes
Input (en) If you got it why not? He is worth over 20 billion dollars after all.
f{e)ference Silo tiene, ;por qué no? Al fin y al cabo, vale més de 20 000 millones de délares.
ES
Ramp (es) Silo tienes, ;por qué no? Es millonario después de todo.
base (&s) Si lo tienes, ;por qué no? El vale mis de 20 mil millones de délares después de todo.

In-context 1.
examples
(en)

S

11.

12.
13.

14.

thats such a fun thing to have in your code of conduct. are you more of a dog person than cat

person?

For sure lol, it was so nice talking with you, say hi to your cats for me!

thats such a fun thing to have in your code of conduct. are you more of a dog person than cat

person?

What can’t dogs do! I know they aren’t color blind like we were taught when young.

It was so nice chatting with you, tell yuki hi!

For sure lol, it was so nice talking with you, say hi to your cats for me!

Oh yeah. That sucker was mean let me tell you. I think I would have a rabid dog chase

me, which by the way dogs are not color blind!

Thanks you too! And watch out for dogs, they’re not actually colorblind but they just

don’t see as many colors as a normal human can

LOL That’s funny! Google prefers dogs over cats! The wrote in their code of conduct that

they are a dog company. It’s been fun chatting with you!

Such gorgeous dogs! Do you & your dogs live in a northern climate?

LOL That’s funny! Google prefers dogs over cats! The wrote in their code of conduct that

they are a dog company. It’s been fun chatting with you!

thats such a fun thing to have in your code of conduct. are you more of a dog person than cat
erson?

PS)uch gorgeous dogs! Do you & your dogs live in a northern climate?

haha me too! I heard that they wore clothes that were full of color. Surprised me

because I always thought of them as wearing black and white.

For sure lol, it was so nice talking with you, say hi to your cats for me!

Input (EN)
Reference
(p1)

Ramp (PT)

base (pT)

lol T had an African grey that could say everything I said around the house. Like clean your
room! as well any loud sounds.

"lol Tinha um papagaio-cinzento que conseguia dizer tudo o que ouvia em casa. Tipo ""Limpe
o seu quarto!"" e também quaisquer sons altos"

haha eu também! Eu ouvi dizer que eles usam roupas de todas as cores. Surpreendeu-me porque
eu sempre pensei neles usando preto e branco.

hahaha eu tinha um papagaio cinza africano que dizia tudo o que eu dizia em casa. Como
limpar o quarto! Bem como qualquer som alto.

Table B.6 | Examples of CoCoA-MT (formal) where Ramp performs worse than
the base model in cross-lingual zero-shot setting. Potentially problematic in-context
examples leading to mistranslations or hallucinations are highlighted.
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B.2 Steering Language Models for Machine Translation Personalization

B.2.1 Experiments Reproducibility

In this section, we provide every parameter we use for the reproducibility of our
experiments setups.

B.2.1.1 Base Prompt

We use the same prompt template across all methods: ZS (which corresponds to the
original model translation), ZS-Exp.iyr, ZS-Exp.pr (detailed in Section B.2.1.4), MS,
ActAdd, ReFT, and SAE-based contrastive setups. This prompt, shown in Listing B.3,
instructs the model to translate the source sentence while explicitly preventing it from
adding any explanations about the translation process. Since all test models are Instruc-
tion Tuned, we utilize their native chat templates to preprocess the input accordingly.
For multi-shot examples, the user and assistant turns are repeated for each example,
always using the same prompt structure.

B.2.1.2 ReFT Training

ReFT training was conducted using the PyReFT toolkit from the original authors?.
We applied the intervention at the same hook point used by other steering methods -
specifically, the layer output corresponding to the residual stream at the selected layer.
The training configuration includes a low_rank_dimension of 4, lora_alpha set to 32,
and a lora_dropout of 0.05. ReFT was trained on the same 20 prompts used in the MS
setup, for a total of 100 epochs.

B.2.1.3 SAE COI’lt.HT and SAE Cont.pT

We use the NNsight library (Fiotto-Kaufman et al., 2025) to extract and manipulate
model activations for all steering experiments. The source code is publicly available in
the repository linked in the main body of this paper. For consistency, we use the same
set of contrastive examples employed in the MS approach.

B.2.1.4 ZS—EXP.HT and ZS—EXp.pT

For both the ZS-Exp.iyr and ZS-Exp.pr setups, we used GPT-40 (June 2025) to generate
explanations detailing the stylistic differences between a base translation and a target

2https://github.com/stanfordnlp/pyreft
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human translation. The prompt template used for this task is shown in Listing B.1,
using the same 20 examples as in the MS, SAE Cont.iyr, and SAE Cont.pr setups.

All outputs were manually inspected to ensure no verbatim excerpts from the provided
examples were present, avoiding any risk of data leakage. Example outputs for different
novels are shown in Listing B.2.

Finally, these generated guidelines are used to prompt the evaluated models, following
the template shown in Listing B.3.

Listing B.1 Prompt template used to get GPT 4o explanation using translation examples.

Objective - Identify stylistic choices in translations for
< personalization purposes.

You will be provided with a source text, a standard translation, and a
— target translation by a specific translator whose style we want to
— emulate.

Your task is to analyze the 'Target translation' by comparing it to the
— 'Base translation' and the 'Source text'.

Identify and list the distinctive stylistic patterns, choices, and

— preferences exhibited in the Target translation.

These stylistic cues should help another translator (or an AI) to adapt
— their translations to match the style of the target translator.

Source text: ____
Base translation: ____
Target translation:

[... Repeat Source, Base and Target]

Please extract a concise list of key stylistic cues. Focus on aspects
— such as vocabulary choices, sentence structure, tone and register,
— handling of cultural nuances, punctuation/formatting preferences
— and overall creativity.

Output a short list of stylistic cues as bullet points. Write the list
< as if you were directly giving the guidelines to the translator and
< avoid using specific examples.
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Figure B.1 | Results for every language on Gemma 2 2B.

B.2.2 All Models Results
B.2.2.1 Full Prompting and Steering Results

We present detailed plots of the results for each novel across the three evaluated models
in Figure B.1 (Gemma 2 2B), Figure B.2 (Gemma 2 9B), and Figure B.3 (Llama
3.1 8B). These plots display the performance of all evaluated methods, reporting the
three submetrics: H accuracy (general human-likeness), P accuracy (translator-specific
accuracy), and P, (personalized flip accuracy), alongside the corresponding comeT
scores measuring translation quality.

B.2.3 Dataset and Generation Examples

We present in Table B.7 and Table B.8 a selection of examples from two different
languages, showcasing outputs from each of the tested setups. For each example, we also
report the corresponding classification label predicted by the classifier and the associated
coMET score. Additionally
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Source (ZH)

FEERE, AE—5, BEER. WE-EHa: [THEERTE, BER. =&
FES, RMEER.

Hy

Forthwi/h, then_’ﬁ)re, he prnsf[utez{ a, furthcr ];(’mm] qf what came next, when he mz{qht sight uf a
picture of a bow. On this bow hung a citron. There was also this ode: Full twenty years right and
wrong to expound will be thy fate! What place pomegranate blossoms come in bloom will face the
Palace Gate! The third portion of spring, of the first spring in beauty short will fall!l When tiger
meets with hare thou wilt return to sleep perennial.

The picture that followed was of a bow with a citron hanging from i, followed by what looked like
the words of a song: You shall, when twenty years in life’s hard school are done, In pomegranate-time
to palace halls ascend. Though three springs never could with your first spring compare, When hare
meets tiger your great dream shall end.

Gemma 2 2B

Gemma 2 9B

Llama 3.1 8B

When he turned back to look, he saw a bow hanging on it, with a plum blossom. There was also a
poem that said: "For twenty years, I have been trying to distinguish right from wrong, and the plum

blossoms bloom in the palace. In the spring, the tigers and the rhinoceroses meet, and they dream of

returning home."

Looking back, he saw a painting of a bow with a quiver hanging on it. There was also a line of

lyrics that said: For twenty years, I have distinguished right from wrong, and the blossoming oflh(’
flowers illuminates the imperial court. Three springs have passed, and now it is the

hcgmmng of spring again, like a dream where tigers and rhinoceroses meet.

As I looked back, I saw a painting qfa bow with a censer on it. There was also a poem that said:

th'my years of distinguishing right from wrong, the lotus flower blooms in the palace. Three springs
competing with the scenery of the first spring the tiger and the rhinoceros meet and return to their
dream."”

MT

MT

MT

0.49

0.56

0.53

ZS-Exp.yr

ZS-Exp.pT

MS

And as he turned his gaze back upon the scene once more, there was displayed an archer’s bow strung
taut/y,' upon its sufﬁﬂcc hng ﬂfmgmnr plum blossom. A poem also recited thus xpake: "For twenty
years I have sought truth amidst strife, where blooming durian flowers illuminate the palace walls.
In spring’s embrace, th(’y Vicfor bﬂauty, tigers (lashmg in dreams (_)f return."

And as he turned his gaze back upon the scene once more, there was displayed an archer’s bow strung
taut]y; upon its su(ﬂza’ hung afmgmm plum blossom. A poem also recited thus: "For fwenty years
I have sought truth amidst strife, where blooming durian flowers illuminate the palace walls. In
spring’s embrace, they vie for beauty, tigers clashing in dreams of return.”

Then, turning around, he noticed a picture depicting a bow hanging on its string, adorned with incense
sticks. A verse read: "For twenty years I've tried to discern truth from falsehood, and wherever fragrant
plum blossoms bloom, the palace gates shine brightly."

MT

MT

Hy

0.60

0.61

0.65

ActAdd

ReFT

SAE
Cont.y
a=1

a =150
SAE Cont.pp
(e=53)

When he turned back to look, he saw a bow hanging on it, with a plum blossom. There was also a
poem that said: "For twenty years, I have been trying to tell right from wrong, and the plum blossoms
bloom in the palace. In spring, the tigers and thinoceroses meet, and they dream of going back home."
When he turned back 1o look, he saw a bow hanging there, adorned with a plum blossom. There
was also a poem that said: "For twenty years, I have tried to distinguish right from wrong, and plum
blossoms bloom within the palaa In spring, tiger and rhinoceros meet, 1[rLammg 0/ their return
hﬂm(

When he turned back to look, he saw a bow hung upon it, with a plum blossom. There was also a
verse which read: "For twenty years, I have stn{qgl(’:{ to discern trur/:_ fmmfalﬂ’hoad, and the pl ums
blossomed where the impcriul court resided. During the three springs, the tiger and rhinoceros met,
dreaming of their return.”

He looked back and there hung a bow adorned with a plum blossom. A verse read: "Twenty years
T've siruggh’dfor truth, where fmgmm plmns bloom near the impm‘al court. Spring arrives, tiger and
rhino clash, dreammg of their return.

The when the veryShellTruth lookWarmTheTheTheTigeratPoint [.]

He looked back and saw a bow adorned with fragrant citron. A verse declared: "Twenty years I've
weighed right and wrong; where pomegranate blossoms bloom, they light the palace gates. Spring’s

full bloom cannot match early spring’s grace. When tiger meets rhino, one returns to the great dream.”

MT

MT

MT

MT

MT

Hy

0.53

0.58

0.62

0.62

0.11

0.65

Table B.7 | Example paragraphs from “Dream of the Red Chamber” (ZH—EN) trans-
lated with H; personalization. Setup outputs are from Gemma 2 2B; only MS and SAE

Cont.pr successfully flip the classifier prediction.
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Source (IT)

Intanto la stalla fu chiusa e Pinocchio rimase solo: e perché erano molte ore che non aveva
mangiato, comincié a sbadigliare dal grande appetito. E, sbadigliando, spalancava una bocca
che pareva un forno.

Hy

When the stable door was closed, Pinocchio was left alone. And since he hadn’t eaten in many hours,
he began to yawn from hunger. And when he yawned, his mouth opened as wide as an oven.

The stable was then shut and Pinocchio was left alone. He had not eaten for many hours, and he
began to yawn from hunger. And when he yawned he opened a mouth that seemed as wide as an
oven.

Gemma 2 2B

Gemma 2 9B

Llama 3.1 8B

At that moment the stable was closed and Pinocchio was left alone, and because it had been many
hours since he had eaten, he began to yawn from a great hunger. And, yawning, he opened a mouth
that seemed like a furnace.

Meamwhile, the stable was closed and Pinocchio was left alone: and because it had been many hours
since he had eaten, he bqgan to yawnr/Amm his greal hunger. Aud, yawm’n{g, he npem’d a mouth that
looked like an oven.

Meanwhile the stable was closed and Pinocchio was left alone: and because it was many hours since
he hadn’t eaten, he bqgml to yawﬂfmm great huﬂ(qﬂr. And, yawning he openm' a mouth that seemed
like an oven.

MT

MT

MT

0.79

0.80

0.80

ZS-Exp.yt

ZS-Exp.pT

MS

Meanwhile, the stable door was shut, leaviﬂg Pinocchio alone. His tummy rumbled because it had
been hours since his last meal, and he started yawning wide/y fmm his hLIﬂXt’T. With each yawn, his
mouth opened like an oven.

Meanwhile, the stable door was shut, ]cavin(q Pinocchio all alone. His tummy rumbled because it
had been hours since his last meal, and he started yawning wia’z’ly»f‘mm sheer hmtg(’r, With each
yawn, his mouth gaped open like an oven.

Meanwhile, the stable door was shut and Pinocchio was left alone. Since it had been hours since he
last ate, he llqgan yawningﬁom hunger. Each yawn opened his mouth wide mwugh to look like an
oven.

M1

0.78

0.80

0.81

a =50

SAE Cont.pt
(e=5)

Meanwhile, the stable was closed and Pinocchio remained alone. Because many hours pa:sea' without
eating he started yawning from very big hunger. And while yawning he opened his mouth wide like
an oven.

Meanwhile, the stable was closed and Pinocchio stayed alone. Because many hours had passed since
he last ate, he began to yawn from big hunger. And, yawning he opened a mouth that looked like an
oven.

Meanwhile, the stable door was shut and Pinocchio was left alone. Because it had been many hours
since he had eaten, he started to yawn with intense hungﬂr, Am[, as he yawnc{/, his mouth gaped
open like an oven.

Meanwhile, the stable door shut, ]faving Pinocchio all alone. Because it had been many hours since
he'd eaten, he started to yawn with intense huﬂgcr. As he yawnc[[, his mouth gap(’d open, Inoking
like an oven.

He He "It The ... You It ”[They They) THE..II HE IT [There There THEYRE WE "A A
FOR "[..]

The stable was then shut, lmving Pinocchio all alone. He had not mmzfor many hours and ]Jfgan
1o yawn from great hunger. As he yawned, he opened his mouth wide, like an oven.

MT

MT

M1

MT

0.75

0.77

0.79

0.82

0.14

0.84

Table B.8 | Example paragraphs from “Pinocchio” (IT—EN) translated with

per—

sonalization. Setup outputs are from Gemma 2 9B; ZS-Exp.pr, MS, SAE Cont.yr and
SAE Cont.pt (both « = 5) can flip the classifier prediction.
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IT gemma-2-9b-it RU gemma-2-9b-it JA gemma-2-9b-it
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Figure B.2 | Results for every language on Gemma 2 9B.
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Listing B.2 Examples of explanation obtained from GPT 40 when comparing different
translations from different novels.

[When comparing H1 and MT for Beware of Pity (German)]

- Maintain a tone that is professional, thoughtful, and subtly

< persuasive.

- Avoid overly technical jargon unless necessary; explain specialized
< terms briefly if used.

- Preserve the author's voice, keeping a balance between academic rigor
— and narrative engagement.

- Ensure smooth transitions between sentences and paragraphs to support
< coherent argumentation.

- Translate idiomatic expressions in a way that retains their intended
— effect, even if the wording differs.

[When comparing H1 and H2 for Beware of Pity (German)]

- Keep the tone warm, welcoming, and direct - avoid overly formal or

— distant language.

- Use active voice wherever possible to maintain energy and engagement.
- Avoid idioms or expressions that may not translate culturally; aim for
< universal accessibility.

- Maintain consistent tone and register throughout, adapting to the

— intended audience's familiarity with the subject.

- Respect the rhythm and structure of the original, but feel free to

— adjust sentence length for readability.

[When comparing H1 and H2 for Crime and Punishment (Russian)]

- Prefer dynamic over formal vocabulary: Opt for vivid or emotionally
< charged words when available.

- Add tonal nuance and emotional shading: Enrich dialogues and narration
— with subtle shifts in tone, especially sarcasm, understatement, or
< irony, to match character voice or mood.

- Use contractions and familiar phrasing: Employ contractions and

— relaxed expressions to preserve spoken character.

- Expand or rephrase for clarity and voice: Don't hesitate to slightly
< reword or elaborate if it strengthens tone, clarifies intent, or

— enhances character differentiation.

- Favor rhythmic, flowing sentence structure: Break long, formal

< sentences into multiple shorter clauses or use punctuation (dashes,
— ellipses) for dramatic or emotional effect.

[...]
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Listing B.3 Zero shot template template when prompting language models with
different setups

Translate the following sentence between the angular parentheses into

— English.

[if setup == ZS-Exp]
[Follow the following guidelines when translating: <explanations here>]

The original sentence is:

Remember to write only the translation, without any additional text or

— explanation.

IT Llama-3.1-8B-Instruct

JA Llama-3.1-8B-Instruct

RU Llama-3.1-8B-Instruct

7 10 20

1.0 ~
0.8 08 08
0.8
0.6 0.6 0.6
L o6 ]
3 3
0.4 0.4
S o4 G 04
| 02 . 02 4,
00 4o l 00 oo
MSExpZS 1 2 3 5 7 10 20 MSExp2S 1 2 3 5 7 10 20 MSExpzS 1 2 3 5 7 10 20
NL Llama-3.1-8B-Instruct FR Llama-3.1-8B-Instruct ZH Llama-3.1-8B-Instruct
1.0 1.0
0.8 0.8
0.8 08
0.6 0.6
L 06 L o6
3 043
0.4 )
O 04 9 04
l 02, l 02, l
00 g0 00 oo
MSExpZS 1 2 3 5 7 10 20 MSExp2S 1 2 3 5 7 10 20 MSExp2S 1 2 3 5 7 10 20
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0.6 . ® Haccuracy
w P accuracy
043 P accuracy
= Comet
0.2
[ 00

Figure B.3 | Results for every language on Llama 3.1 8B.






APPENDIX C

Interpretability in Human
Translation Workfows

C.1 Machine Translation Post-editing for Typologically Diverse Languages

C.1.1 Subject Information

During the setup of our experiment, one translator refused to carry out the main task
after the warmup phase, and another was substituted by our choice. Both translators
were working in the English-Italian direction and were found to make heavy usage
of copy-pasting during the warmup stage, suggesting an incorrect utilization of the
platform in light of our guidelines. Both translators, which we identified as T5 and
T for Italian, were replaced by T5 and T, respectively. Table C.1 reflects the final
translation selection for all languages, with the information collected by means of the
pre-task questionnaire.

C.1.2 Translation Guidelines

An extract of the translation guidelines provided to the translators follows. The full
guidelines are provided in the additional materials.

Fill in the pre-task questionnaire before starting the project. In this exper-
iment, your goal is to complete the translation of multiple files in one of
two possible translation settings. Please, complete the tasks on your own,
even if you know another translator that might be working on this project.
The translation setting alternates between texts, with each text requiring a
single translation in the assigned setting. The two translation settings are:

291
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Gender Age Degree Position EnLevel YoE PEYoE %PE

T M 35-44 BA Freelancer C2 > 15 2-5 20-40%
Arabic Ty M 25-34 BA Employed C2 5-10 2-5  60-80%
T3 M 25-34 MA Freelancer C1 5-10 <2 20-40%
T, M 25-34 MA Freelancer C2 5-10 5-10  60-80%
Dutch Ts F 35-44 MA Freelancer C1 10-15 5-10  40-60%
T3 F 25-34 MA Freelancer C2 2-5 2-5  20-40%
T, F 25-34 MA Employed C1 5-10 5-10  20-40%
Italian Ts F 25-34 MA Freelancer C1 2-5 2-5  40-60%
Ty F 35-44 BA Freelancer C2 10-15  5-10 >80%
T4 F 25-34 BA Freelancer C2 5-10 2-5 <20%
Turkish Ts F 25-34 BA Freelancer C1 5-10  5-10 <20%
T3 M 25-34 High sch. Freelancer C2 10-15 <2 <20%
T F 35-44 MA Employed C1 5-10 5-10  20-40%
Ukrainian Ts M 35-44 MA Employed C1 10-15  10-15 20-40%
T3 M 35-44 Highsch. Employed B2 25  2-5  20-40%
T F 25-34 MA Employed C2 10-15  5-10  40-60%
Vietnamese To F 25-34 BA Freelancer C1 5-10 <2 20-40%
T3 F 25-34 MA Employed C1 2-5 <2 <20%

Table C.1|Subjects information for DivEMT. The last three columns represent respec-
tively the number of years of professional experience as a translator (YoE), the number
of years of experience with MT post-editing (PE YoE) and the % of work assignments
requiring post-editing in the last 12 months (% PE) for each subject.

1. Translation from scratch. Only the source sentence is provided,
you are to write the translation from scratch.

2. Post-editing. The source sentence is provided alongside a translation
produced by an MT system. You are to post-edit this MT output.
Post-edit the text so you are satisfied with the final translation (the
required quality is publishable quality). If the MT output is too time-
consuming to fix, you can delete it and start from scratch. However,
please do not systematically delete the provided MT output to give
your own translation.

Important: All editing MUST happen in the provided PET interface: that
is, working in other editors and copy-pasting the text back to PET is NOT
ALLOWED, because it invalidates the experiment. This is easy to spot in
the log data, so please avoid doing this. Complete the translation of all files
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sequentially, i.e. in the order presented in the tool. DO NOT SKIP files at
your own convenience. Make sure that ALL files are translated when you
deliver the tasks.

The aim is to produce publishable professional quality translations for both
translation settings. Thus, please translate to your best abilities. You can
return to the files and self-review as many times as you think it is necessary.
Important: The time invested to translate is recorded while the active unit
(sentence) is in editing mode (yellow background). Therefore:

* Only start to translate when you are in editing mode (yellow back-
ground). In other words, do not start thinking how you will translate
a sentence when the active unit is not yet in editing mode (green or

red background).

* Do not leave a unit in editing mode (yellow background) while you
do something else. If you need to do something unrelated in the
middle of a translation then go out of editing mode and come back
to editing mode when you are ready to resume translating.

First you will be translating a warmup task, and then the main task.
When you are translating each file, you can consult the source text by
looking up the url in the Excel files that we have sent for reference.

In order to find the correct terminology for the translation you can consult
any source in the Internet. Important: However, it is NOT ALLOWED
to use any MT engine to find terms or alternatives to translations (such as
Google Translate, DeepL, MS Translator or any MT engine available in
your language). Using MT engines invalidates the experiment, and will be
detected in the log data. Please fill-in the post-task questionnaire ONLY
ONCE after completing all the translation tasks (both warmup and main
tasks).

C.1.3 Details on Document Selection and Preprocessing

Document selection  Table C.2 present the distribution of selected documents from
the Flores-101 devtest split based on their domain and the number of sentences that
compose them. The first goal in the selection process was to preserve a rough balance
between the three categories while including mostly 4 and 5-sentence docs which
are faster to edit in PET (no need to frequently close and reopen an editing window).
Another objective of the selection was to minimize the chance of translators finding
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Type WN WV WB #Sent. # Words

3S 11 13 11 105 2168
4S 14 8 13 140 3214
5S 12 13 12 185 3826
Tot. 37 34 36 450 9626

Table C.2 | Distribution of the selected DivEMT documents across sizes and Wikipedia
categories. A Type value of NS stands for documents composed by N contiguous
sentences, WN, WV and WB stand respectively for WikiNews, WikiVoyage and
Wikibooks

‘documents

# of documents
L .

e e pom o oNom o omopomomooomorooW 0 1 2 3 4 5
Language # of translations
Figure C.1 | Left: Distribution for the availability of documents selected for DivEMT
in languages other than English. Right: Quantity of selected documents per number
of available translations of Wikipedia.

the translated version of the Wikipedia article from which documents were taken and
copied from there, despite our guidelines. We thus scrape the articles from Wikipedia
and assess the number of available translations. Among the selected documents, only a
small subset has translations in other languages (see Figure C.1 top, an article can have
multiple languages), mainly in Hebrew (14), Chinese (10), Spanish (7) and German (5)
respectively. Considering the total number of translations for every article (Figure C.1
bottom), we see that roughly 75% of them (79 docs) have no translations. We consider
this satisfactory as proof there should not be a large amount of possible copying involved,
and we follow up on this evaluation by also ensuring that no repeated copy-paste patterns
are present in keylogs after the warmup stage.

Filtering of Outliers  For our analysis of Section 8.4, we only use sentences with an
editing time lower than 45 minutes, which was selected heuristically as a reasonably high
threshold to allow for extensive searching and thinking. In the following, we present
the identifiers of the sentences that were filtered out during this process. E.g. 54.1 means
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the first sentence of document 54, having item_id equal to flores101-main-541 in
the dataset. Note that the sentences were outliers only for 2/6 languages and were all
different, indicating no systematic issues in the sample: ARA: 54.1, 100.3, VIE: 3.1,
3.2, 24.3, 28.4, 33.1, 33.2, 40.3, 41.2, 50.3, 100.1, 102.1, 106.1, 107.2, 107.4. The 17
sentences were removed for all modalities and languages in the analysis of Section 8.4
to preserve the validity of our comparison, representing a loss of roughly 4% of the
total available data, a tolerable amount for our analysis.

Fields Description  Table C.3 presents the set of fields that were collected for every
entry of the DivEMT dataset. The fields related to keystrokes, times, pauses, annota-
tions and visit order were extracted from the event log of PET .per files, while edits
information and other MT quality metrics were computed in a second moment with

the help of widely-used libraries.

C.1.4 Other Measurements

Automatic Evaluation of NMT Systems  The selection of systems used in this
study was driven by a broader evaluation procedure covering more models, metrics
and target languages. Table C.4 presents the overall results of our evaluation. We use
HuggingFace’s transformers library (Wolf et al., 2020) for all neural models, using
the default decoding settings without further fine-tuning. All metrics were computed
using the default settings of SacreBLEU (Post, 2018) and comeT (Rei et al., 2020).

Inter-subject Variability in Translation Times Although the variability across
different subjects working on the same language directions is not the main concern of
our investigation, we produce Figure C.2 (an expanded version of Figure 8.2) to visualize
the inter-subject variability for translation times. We observe that the variability across
different translators is more pronounced when translating from scratch and that the
overall trend of speed improvements associated with PE is mostly preserved (with few
exceptions related to the PE; modality).
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Field name

Description

unit_id, flores_id,
subject_id, task_type

Identifiers for the item, respective FLORES-101 sentence, transla-
tor and translation mode.

src_text
mt_text
tgt_text

aligned_edit

The original source sentence extracted from Wikinews, wikibooks
or wikivoyage.

MT output sentence before post-editing, present only if
task_type is ‘pe’.

Final sentence produced by the translator (either from scratch or
post-editing mt_text )

Aligned visual representation of the machine translation and its
post-edit with edit operations

edit_time

Total editing time for the translation in seconds.

k_letter, k_digit,
k_white, k_symbol,
k_nav

k_erease, k_copy,
k_paste, k_cut, k_do
k_total

Number of keystrokes for various key types (letters, digits,
keystrokes, whitespaces, punctuation, navigation keys) during the
translation.

Number of keystrokes for erease (backspace, cancel), copy, paste,

cut and Enter actions during the translation.

Total number of all keystroke categories during the translation.

n_pause_geq_N,
len_pause_geq_N

Number and length of pauses longer than 300ms and 1000ms
during the translation.

num_annotations

Number of times the translator focused the target sentence texbox
during the session.

n_insert, n_delete,

n_substitute, n_shift,

tot_shifted_words,
tot_edits, hter
cer

Granular editing metrics and overall HTER computed using the
Tercom library.

Character-level HTER score computed between the MT and post-
edited outputs.

bleu, chrf

Sentence-level BLEU and ChrF scores between MT and post-
edited fields computed using the SacreBLEU library with default
parameters.

time_per_char,
key_per_char,
words_per_hour/minute

Edit time per source character, expressed in seconds. Proportion
of keys per character needed to perform the translation. Amount
of source words translated or post-edited per hour/minute

subject_visit_order

Id denoting the order in which the translator accessed documents
in the interface.

Table C.3 | Description of the main fields associated to every DivEMT data entry. An
entry correspond to a translation in a specific modality (HT, PE; or PE;) for one of the
six target languages
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System BLEU chrF2 TER  chrF2++ COMET
M2M100 19.2 50.9 69.2 47 0.417
Acabic MarianNMT 227 542 647 50.4 0.483
mBART-50 17 48.5 69.1 44.8 0.452
GTrans 34.1 65.6 52.8 61.9 0.737
M2M100 21.3 52.9 66.1 49.8 0.405
MarianNMT 25 569 625 53.8 0543
Dutch mBART-50 22.6 53.9 63.7 50.9 0.532
DeepL 28.7 59.5 59.5 56.6 0.67
GTrans 29.1 60 58.5 57.1 0.667
M2M100 35.9 63.1 47.3 60.8 0.614
Indonesian  MarianNMT 385 656 465 633 0.671
mBART-50 35.9 63.3 47.7 61.1 0.706
GTrans 51.5 73.6 34.5 71.9 0.894
M2M100 23.6 53.9 63.2 51 0.51
MarianNMT 275 57.6  58.9 54.8 0.642
Italian mBART-50 24.4 54.7 61.2 51.8 0.648
DeepL 33 61 54 58.5 0.795
GTrans 32.8 61.4 53.6 58.8 0.781
M2M100 24.5 32.2 123.3 26 0.389
Japanese mBART 271 354 123 283 0.538
DeepL 41.3 46.8 108 37 0.75
GTrans 38.4 44.7 101.5 33.9 0.683
M2M100 16.1 46.5 74.2 43.1 0.486
MarianNMT 193 49.9  70.5 46.6 0.648
Polish mBART-50 17.4 48.2 72.4 44.9 0.603
DeepL 24 54.3 66.4 51.1 0.832
GTrans 24.4 54.6 64.6 51.4 0.804
M2M100 22.5 51.1 65.6 48.1 0.427
MarianNMT 254 535  64.3 50.7 0537
Russian mBART 24.8 52.6 63.7 49.7 0.541
DeepL 35.9 61.8 53.3 59.3 0.79
GTrans 33 60.5 55.2 57.7 0.731
M2M100 20.3 53.9 65.2 50.1 0.686
Tuskish MarianNMT 263 50.8 588 55.8 0.881
mBART-50 18.8 52.7 67.5 48.7 0.755
GTrans 35 65.5 50.4 62.2 1
M2M100 21.9 51.4 65.8 48.3 0.463
Ukrainian MarianNMT 20 4}8.8 69.2 45.7 0.427
mBART-50 219 507 679 47.7 0.587
GTrans 31.1 59.8 55.9 56.8 0.758
M2M100 33.3 52.3 52.4 52.1 0.43
Vietnamese MarianNI\ilT 26.7 4_5.7 60.2 45.6 0.117
mBART-50  34.7 54 507 53.8 0.608
GTrans 45.1 61.9 41.8 61.9 0.724

Table C.4 | Automatic MT quality of all evaluated NMT systems on all tested lan-
guages in the English-to-XX setting, using the FLORES-101 full devtest for evaluation.
Besides mBART-50 and Google Translate (GTrans), we also evaluate a set of bilin-
gual Transformer-based NMT models trained with MarianNMT (Tiedemann and
Thottingal, 2020), the DeepL industrial MT system and the multilingual M2M-100
418M model (Fan et al., 2021). Best overall and open-source only performances are
highlighted.
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Encuist  Inland waterways can be a good theme to base a holiday around.
HT W llas baand Ui Ll adslill LU oLl 055 of (Ko
o
E PE MT: Wom s LBY B Bgge sl LU olall 3G ol (K
< L pE: W s LBY Vi elae sl U1 Ll 55 0 oS
MT: Js> s LBY o Bgdse sl Laad) ol o5 of (Ko
PE2 ’ .
PE: We> dllas slad) 1 UK adsll L5UE ol el oG 8
HT  Binnenlandse waterwegen kunnen een goed thema zijn voor een vakantie.
T
E PE, MT: [De binnenwateren kunnen een goed thema zijn om een vakantie omheen te baseren .
= PE: Binnenwateren kunnen een goede vakantiebestemming zijn .
pE, MT: Binnenwaterwegen kunnen een goed thema zijn om een vakantie rond te zetten .
2 PE: Binnenwaterwegen kunnen een goed thema zijn om een vakantie rond te organiseren .
HT I corsi d’acqua dell’entroterra possono essere un ottimo punto di partenza da cui organizzare una vacanza.
4
é PE; MT: Trasporto fluviale pud essere un buon tema per basare @i vacanza in giro .
= PE: I canali di navigazione interna possono essere un Otimo motivo per cui intraprendere unal vacanza.
PE, MT: I corsi d’acqua interni possono essere un buon tema per fondare una vacanza.
PE: I corsi d’acqua interni possono essere un buon tema [su cui basare una vacanza.
HT g bolgelerdeki su yollars, tacil plant igin iyi bir tema olabilir.
T
1<) .
2 MT: I¢ su yollari, bir tatili temel almak igin iyi bir tema olabilir.
& PE; . K . A .
= PE: I¢ su yollary, bir tatil plan1 yapmak igin iyi bir tema olabilir.
PEo MT:' I¢ suyollan, tatil i¢in uygun bir tema olabilir.
PE: ¢ sular tatil i¢in uygun bir tema olabilir.
HT MoskHa crjianyBaTH BUXIJHI, B3sIBIIA 32 OCHOBY IIOJOPOXK BHYTPIIIHIMM BOJHUMU HIJISIXaMHU.
4
% PE MT: BuyTpimHi BogHi NUIAXH MOXKYTbH CTATH MapPHOIO TEMOIO IJisl BiJNOYMHKY HABKOJIO .
5 ! PE: BuyTpimui BoagHI IUUISXU MOXKYTH CTaTH IMapHOIO TEMOIO [Jisi IPOBEJIEHHSI BUXIiJIHUX .
=}
PEy MT: Boani muisxm MoXyTb 6yTn xopomuM 06 'eKToM pissece
6a3yBaHHsI BiJAIIOYNHKY HaBKOJIO .
PE: MicueBicTh HaBKOJIO BHYTPIIIHIX BOAHMUX LLJISXiB MOXKe |OyTH rapHuM BuGOopoM [Hiis
oprasizanil BiAIIOYUHKY.
" HT Du lich trén séng cé thé la mot lya chon phit hop cho ky nghi.
2
4]
5 PE; MT: Dudng thiy noéi dia c6 thé la mot chi dé hay dé tao cd sd cho mét ky nghi xung
r4
E quanh .
> PE: Dudng thiiy noi dia c6 thé 1la mot y tudng hay dé lap ké hoach cho ky nghi.
PE, MT: Céc tuyén nuéc mnoi dia c6 thé la mot chti dé t6t dé xay dung mot ki nghi.

PE: Du lich bing dudng thiy noi dia 12 mot y tudng nghi dudng khong toi.

Table C.5 | An example sentence (81.1) from the DivEMT corpus, with the English
source and all output modalities for all target languages, including intermediate ma-
chine translations (MT) and subsequent post-editings (PE). Colors denote ‘insertions,,

deletions,

substitutions and [shifts| computed with Tercom (Snover et al., 2006).
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Encuisi  The Internet combines elements of both mass and interpersonal communication.
HT s e o Geaitlly 81 JLa¥) Bl polis o oY) ot
o
3 L . . o s N
3 g MT: s illy sl | JLa¥l olis Gy Y] ek
g 1 . - e enm
< PE: =l gomled ) YLVl obs oy iRV et
b, MT: el Jolydly sladt folgdl obs mad mo)
PE: = oty sl ool olie cifid) Kt st
HT  Het internet combineert elementen van zowel massa- en intermenselijke communicatie.
=
e pp, MT: Hetinternet combineert elementen van zowel massa- als interpersoonlijke communicatie.
DD 1 PE: Het internet combineert elementen van zowel massa- als interpersoonlijke communicatie.
MT: Het internet combineert elementen van massa- en interpersoonlijke communicatie.
PE P I
2 PE: Binnenwaterwegen Het internet combineert elementen van massa- en interpersoonlijke communicatie.
HT Internet combina elementi di comunicazione sia di massa sia interpersonale.
z
3 PE MT: Internet combina elementi di comunicazione di massa e interpersonali .
1
£ PE: Internet combina elementi di comunicazione di massa e interpersonale .
PE MT: MT: Internet combina elementi di comunicazione di massa e imerpersona]e.
2 PE: Internet combina elementi di comunicazione di massa e interpersonale.
HT  internet hem kitlesel hem de bireysel iletisim Sgelerini birlestiriyor.
z =}
E pp, MT: Interner, hem kitle hem de kisiler arast iletisimin unsurlarini birlestirir.
= PE: Internet, hem kitleler hem de kisiler arast iletisimin unsurlarini birlestirir.
PEy MT: internet hem kitlesel hem de kisisel iletisim unsurlarint birle;tiriyor.
PE: Internet hem kitlesel hem de kisisel iletisim unsurlarini birlegtiriyor.
HT B inTepHeTi NO€HYIOTHCS €JI€MEHTH IPYIOBOrO CIIJIKYBAaHHS Ta OCOOMCTOrO CHIJIKYBaHHS.
z
E PE MT: InrepHer noeanye B cobi ejIeMEHTH sIK MaCOBOI'O, TaK i Mi»KOCOBGHMCTICHOrO CHIJIKYyBaHHS.
< 1 PE: Inrepner noeanye B cobi ejleMeHTH SIK MAaCOBOTO, TaK i Mi?>KOCOBMCTICHOrO CHiJIKyBaHHS.
&
= PE MT: Iutepaer 06 ’¢IHYy€ sSIK MacCOBY , TaK i MIKJIIOJACBKY KOMYHIKaIliio.
PE: InTepHer mo€aHye B CcOb6i eleMeHTH sIK IPYINOBOI, Tak i 0COGMCTOI KOMyHiKail.
m HT Internet la noi téng hop cac yéu té ciia ca phuong tién truyén thong dai ching va giao tiép
4 lién ca nhan.
z
Z PE MT: Internet két hop cac yéu té ctia cd giao tiép dai ching va giao tiép giita cdc ca nhan.
=] 1 2 2 2 £ 2 Py . . ~ . s 2 .~ Py 2z
> PE: Internet két hgp céac yéu t6 ctia cad truyén thong dai ching va giao tiép gitta cac ca
nhan.
PE MT: Internet két hdp nhitng yéu t6 ctia su giao tiép quan ching va giao tiép  gitta ngudi
2

v6i ngudi .

PE: Internet két hgp nhitng yéu té cia cd viéc giao tiép dai ching va giao tiép ca nhan.

Table C.6 | An example sentence (29.2) from the DivEMT corpus, with the English
source and all output modalities for all target languages, including intermediate ma-
chine translations (MT) and subsequent post-editings (PE). Colors denote /insertions,,
deletions,, substitutions and shifts| computed with Tercom (Snover et al., 2006).
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Modality
B3 From Scratch (HT) ES Google Translate (PE1) E3 mBART-50 (PE2)

Arabic Dutch
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Figure C.2 | Time per processed source word across languages, subjects and translation
modalities, measured in seconds. Each point represents a document containing 3-5
sentences translated by a subject in one of the languages, with higher scores representing
slower editing.
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Subject  Coefficient
ara_t1 0.281
ara_t2 -0.384
ara_t3 -0.103
nld_t1 0.001
nld_t2 -0.459
nld_t3 0.458
ita_t1 0.086
ita_t4 0.350
ita_t5 -0.436
tur_t1 -0.381
tur_t2 0.272
tur_t3 0.109
ukr_t1 0.077
ukr_t2 0.314
ukr_t3 -0.391
vie_t1 0.012
vie_t2 0.176
vie_t3 -0.188

Table C.7 | Coefhicients of
the random intercept re-
lated to the subject_id
variable, representing the
identity of the translator
performing the transla-

tion.

C.1.5 Data Filtering and Feature Significance

We log-transform the dependent variable, edit time in
seconds, given its long right tail. The models are built by
adding one element at a time, and checking whether such
addition leads to a significantly better model with AIC
(i.e. if the score gets reduced by at least 2). Our random
effects structure includes random intercepts for different
segments (nested with documents) and translators, as well
as a random slope for modality over individual segments.
We start with an initial model that just includes the two
random intercepts (by-translator and by-segment) and
proceed by (i) finding significance for nested documen-
t/segment random effect; (ii) adding fixed predictors one
by one; (iii) adding interactions between fixed predictors;
and (iv) adding the random slopes.” From this sequen-
tial procedure, we obtain the resulting model. When
checking the homoscedasticity and normality of resid-
uals assumptions (Figure C.3 and Figure C.4), we find
the latter is not fulfilled. Consequently, we remove data
points for which observations deviate by more than 2.5
standard deviations from the predicted value by the model
(2.4% of the data) and refit the best model on this subset,
in order to find out whether any of the effects were due
to these outliers. The resulting trends do not change
significantly in this final model, in which residuals are
normally distributed. As a final sanity check, in Table C.7
we measure the effect of subject identity on edit times
and find no systematic patterns across languages.

9The document processing order was originally included to
identify possible longitudinal effects but was removed due to a lack
of significant improvements.
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resid(te.Imer6b)

fitted(te.Imer6b)

Figure C.3 | Residuals of the final LMER model, used to verify the heteroscedasticity
assumption.
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Figure C.4 | Quantile-quantile plot before and after the removal of outliers when fitting
the LMER model, used to verify the normality assumption.
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C.2 Word-level Quality Estimation for Machine Translation Post-editing

C.2.1 Filtering Details for QE4PE Data

1. Documents should contain between 4 and 10 segments, each containing 10-100 words
(959 docs). This ensures that all documents are roughly uniform in terms of size
and complexity to maintain a steady editing flow Section 9.2.5.

2. The average segment-level QE score predicted by XCOMET-XXL is between 0.3 and
0.95, with no segment below 0.3 (429 docs). This forces segments to have a decent
but still imperfect quality, excluding fully wrong translations.

3. At least 3 and at most 20 errors spans per document, with no more than 30% of words
in the document being highlighted (351 docs). This avoids overwhelming the editor
with excessive highlighting, while still ensuring error presence.

The same heuristics were applied to both translation directions, selecting only documents
matching our criteria in both cases.

C.2.2 Additional Details and Statistics
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ID Job Eng.  Trans. PE PE%  Adv. MT good/bad for: PE comment
Lvl YoE  YoE CAT YoE
ita- FL (FT) C1 2-5 2-5 100% Often G: Productivity, quality, PE better than from scratch
nohigh- repetitive work. when consistency is needed.
fast
ita- FL (PT) C1 >10 <2 20% Often G: Productivity, repetitive PE produces unnatural sen-
nohigh- work. B: less creative. tences.
avg
ita- FL (PT) C2 >10  2-5 40% Sometimes Gt creativity. Good for time saving.
nohigh-
slow
ita-oracle- FL (FT) C2 5-10  2-5 60% Sometimes  G: Productivity, repetitive Good for productivity, humans
fast work. B: less creative. always needed.
ita-oracle- FL (FT) C2 5-10 5-10 20% Always G: prnductivity, terminol- Good for tech docs, not for ar-
avg o ticulated texts.
ita-oracle- FL (FT) C2 2-5 5-10  80% Always G: Productivity, repetitive Useful for consistency and pro-
slow work. ductivity, unless creativity is
needed.
ita-unsup- FL (FT) C1 <2 <2 60% Often G: Productivity, terminol- Humans will always be needed
fast ogy. B: less creative. in translation.
ita-unsup- FL (FT) C1 >10 2-5 60% Often G: Productivity, repetitive An opportunity for translators.
avg work. B: less creative.
ita-unsup- FL (FT) C1 5-10  5-10  80% Always G: Productivity, repetitive Good for focusing on de-
slow work. B: less creative. tailed/cultural/creative aspects
of translations.

ita-sup- FL (PT) C1 >10 2-5 40% Often G: Productivity, quality, Improves quality and consis-
fast repetitive work, terminol- tency.

ogy.
ita-sup-  FL (FT) C1 >10 5-10  100%  Always G: Productivity, repetitive Consistency improved, but less
avg work. B: less creative. variance means less creativity.
ita-sup- FL (FT) C1 >10 2-5 20% Always G: Productivity, creativity, Good for productivity, but does
slow quality, repetitive work.  not work on creative texts.
nld- FL (FT) C1 >10 >10 40% Often G: Productivity, terminol- Widespread but still too literal
nohigh- ogy. B: creativity.
fast
nld- FL (FT) C2 >10 2-5 40% Always G: Repetitive work. B: cre- Increase in productivity to save
nohigh- ativity, often wrong, worse on costs brings down quality.
avg quality.
nld- FL (FT) C2 >10  5-10  100%  Often G: Creativity, quality, Working with MT can be cre-
nohigh- repetitive work, terminol- ative beyond PE.
slow ogy.
nld- FL (FT) C1 5-10  5-10  80% Always G: Productivity, quality, Good for tech docs and repeti-
oracle-fast repetitive work, terminol-  tion.

ogy.
nld- FL (FT) C2 >10 2-5 40% Always B: less creative, less produc-  Bad MT is worse than no MT
oracle-avg tive, often wrong for specialized domains.
nld- FL (FT) C2 >10 2-5 60% Often G: Productivity, repetitive More productivity at the cost of
oracle- work. B: cultural refer- idioms and cultural factors.
SlOW ences.
nld- FL (FT) C2 5-10  2-5 40% Often G: all. B: often wrong, PE makes you lessin touch with
unsup-fast worse quality. the texts and often poorly paid.
nld- FL (FT) C2 5-10  2-5 60% Sometimes G: Productivity, quality, Practical but less effective for
unsup-avg repetitive work, terminol- longer passages.

ogy. B: wrong.
nld- FL (FT) C2 >10  2-5 40% Always G: repetitive work, produc- Improves consistency and pro-
unsup- tivity, terminology ductivity if applied well.
slow
nld—sup— FL (FT) C2 >10 5-10 60% Often G: repetitive work, creativ- Useful, but worries about job
fast ity, terminology loss
nld-sup-  FL (FT) C2 >10 10 60% Sometimes ~ G: terminology, creativity =~ Useful for inspiration on better
avg translations
nld-sup-  FL (FT) C1 5-10  5-10  80% Always G: repetitive work, produc-  Better productivity at the cost
slow tivity of creativity.

Table C.8 | Sample of pre-task questionnaire results. YoE = years of experience. FL =
Freelance, PT = Part-time, FT = Full-time. PE = Post-editing. G = Good, B = Bad.
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High. High. Inter. Highlights statements

1D Freq. Issues Qual. Flue. Acc. Ful cl Hard?
acc. useful clear
1 T 1 Ef- Infl.  Spot 1 En-
Speed? Qual.? fort? errors joy?

ita- inflection, addi- 4 0.8 0.8 - - 5 1 - - - - - -
nohigh-  tions, omissions
fast
ita- multiple 3 0.6 0.4 - - 2 4 - - - - - -
nohigh—
avg
ita- terminology, 3 08 08 - - 1 5 - - - - - -
nohigh— omissions
slow
ita-oracle- inflection, termi- 5 0.4 0.8 4 4 4 5 5 2 1 1 1 4
fast nology
ita-oracle- syntax, terminol- 3 0.4 0.6 2 1 2 3 1 1 4 1 1 1
avg ogy, omissions, no

context
ita-oracle- syntax, no context 3 0.6 0.6 2 2 2 5 1 1 1 1 4 1
slow
ita-unsup- omissions 3 0.8 0.6 3 2 4 5 3 3 3 2 2 2
fast
ita-unsup- syntax, terminol- 3 0.6 0.6 3 3 3 5 2 3 2 1 1 3
ﬂVg 0@7, no context
ita-unsup- syntax, inflection, 3 0.4 0.6 2 2 3 4 2 2 3 3 4 4
slow terminology,

omissions
ita-sup-  syntax, terminol- 3 0.4 0.4 2 1 2 2 1 1 3 1 2 2
fast ogy, no context
ita-sup-  syntax, terminol- 3 0.4 0.4 2 2 3 5 3 2 4 3 3 4
avg ogy, no context
ita-sup-  syntax, terminol- 3 0.6 0.6 2 2 1 2 2 1 1 4 4 1
slow ogy, omissions, no

context
nld- syntax, terminol- 3 0.2 0.4 - - 4 4 - - - - - -
nohigh-  ogy, omissions, no
fast context
nld- syntax, terminol- 2 0.4 0.6 - - 4 5 - - - - - -
nohigh-  ogy, omissions, no
avg context
nld- terminology, 2 0.2 0.4 - - 3 5 - - - - - -
nohigh-  omissions, no
SlOW context
nld- syntax, inflection, 3 0.6 0.6 2 1 3 2 2 2 2 1 1 1
oracle-fast terminolngy
nld- syntax 3 0.8 0.6 4 3 3 4 3 3 3 3 2 3
nracle—avg
nld- syntax, terminol- 3 0.6 0.4 3 1 3 4 1 1 1 1 1 3
oracle-  ogy
slow
nld- terminology, addi- 3 0.6 0.8 3 2 4 4 1 3 1 1 2 1
unsup—fast tions, omissions
nld- multiple 3 0.6 0.6 4 3 2 4 3 3 4 3 2 3
unsup-avg
nld- syntax, terminol- 1 0.4 0.4 2 4 1 4 4 4 3 2 2 3
unsup-  ogy, omissions
slow
nld-sup-  terminology, 3 06 04 2 2 3 5 1 1 5 3 1 1
fast omissions, no

context
nld—sup— syntax, additions, 3 0.4 0.6 2 2 2 4 1 1 1 1 2 3
ﬂVg no context
nld—sup— multiple 5 0.8 1 4 3 2 5 3 3 2 2 2 4
SlOW

Table C.9 | Sample of post-task questionnaire results. Statements use a 1-Strongly
disagree to 5-Strongly agree scale.
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Target: % edited char. in segment (0-100).

Feature Coeff. Sig.
Target: Seg. Edit Time, 5s bins from 0 to 600s (Intercept) 21.0 e
Feature Coeff. Sig. MT Num. Chars 10.3 -
High. Ratio % 7.1 il
(Incercept) 1.67 . Target Lang.: ITA -9.9 ox
MT Num. Chars 2.42 - Domain: Social 10.9 ox
High. Ratio % 1.59 - Oracle Highlight -5.2
Target Lang.: ITA  -0.34 e Sup. Highlight 47
Domain: Social 0.31 o Highlight ~ -0.9
Oraclc Highlight -0.79 . ITA:Oracle 12.2 HAk
Sup. Highlight 0.02 ITA:Sup. 15.9
nghllght -0.07 ITA: 13.4 ke
MT xcomer QE 0.01 o Social:Oracle 3.5 rx
ITA:Oracle 0.91 o Social:Sup. 0.4
ITASLlp 1.18 bl Social: 21 *k
ITA: 0.48 i High. Ratio:Oracle -0.18
Social:Oracle -0.19 * High. Ratio:Sup. 178 -
Social:Sup. -0.34 o
Social: -0.22 wox Edit Order
High. Ratio:Oracle -0.83 * Translator ID Random Factors
High. Ratio:Sup.  -1.33 Segment [D
Edit Order MT # Chars
Translator ID Random Factors Target Lang Zero-Inflation Factors
Segment ID Text Domain

Translator ID

Table C.10 | Details for the negative bino-
mial mixed-effect model used for the pro-
ductivity analysis of Section 9.3.1.

Table C.11 | Details for the zero-inflated
negative binomial mixed-effect model
used for the editing analysis of Sec-
tion 9.3.2. The model achieves an RMSE
of 0.11 and an R? of 0.98.
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Modalities English—Italian  English—Dutch Both

Bio Social Both Bio Social Both Bio Social Both

Oracle and Sup. 0.17 032 0.25 0.38 0.29 034 026 029 0.29

0.14 030 0.20 0.31 0.27 0.28 0.22 029 0.24

Supervised and Oracle 0.19 0.31 026 030 026 029 0.24 029 0.28

P 0.19 0.33 0.25 0.28 0.24 0.25 024 029 0.25

and Oracle 0.22 032 027 035 030 033 028 0.31 0.30

Sup. 0.22 0.37 030 0.39 027 033 030 031 0.32

Table C.12 | Average highlight agreement proportion between different modalities
across language pairs and domains (Section 9.3.2). Scores are normalized to account
for the relative frequency of highlight modalities compared to the mean highlight
frequency for the current language and domain combination.

Domain Speed | P(H) P(E) |P(E[H) P(E|-H) An(E)|P(H|E) P(H|-E) Ag(H)
English—Italian

Fast 04/.01] 12702 .03/.01  4.0/2.0 | .30/.27  .08/.11  3.7/2.4

Biomed. Avg. | .09 .10/.05| .27/12  .09/.04 3.0/3.0 | 22/.30 .07/11  3.1/27

Slow 09/.02] .217.04  .08/.01  2.6/40 | 19/.26  .07/.11  2.7/2.3

Fast A17.07] .30/.20  .07/.04  4.2/5.0 | 40/.52 11716 3.6/3.2

Social  Avg. | .14 .23/.14| 48/.32  18/10 2.6/32 | 30/.42  .09/15 3.3/2.8

Slow A7/.05| .39/.14  14/.03  2.7/4.6 | 31754 11717 2.8/3.1
English—Dutch

Fast 03/.02] 11705 .02.01  55/5.0 | .48/.61  .13/.18  3.6/3.3

Biomed. Avg. | .14 11/19] 20/30  .10/17  2.0/1.7 | 25/.29  .13/.16 1.9/1.8

Slow A2/10| 26/.23  .10/.07  2.6/32 | .29/.42  12/.16  2.4/2.6

Fast 06/.07] 19/21  .04.04  47/52 | 37/.47  10/.13  3.7/3.6

Social  Avg. | .12 17/32| 32/.48  15/29  21/1.6 | 22/.23  .10/12  2.2/1.9

Slow A18/.18| 38/.40  .15/14  2.5/2.8 | .25/.34  .09/.11  2.7/3.0

Table C.13 | Highlighting (H) and editing (E) statistics for each domain, and translation
direction across translator speeds (n = 4 post-editors per combination, regardless of
highlight modality). Values after slashes are adjusted by projecting highlights of the
specified modality over edits from No Highlight translators to estimate highlight-
induced editing biases (Section 9.3.2).
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Domain Modality | P(H) P(E)|P(E[H) P(E|-H) Au(E)|P(H[E) P(H|-E) Ag(H)
English—Italian

Random | .12 - -1.02 -702  -/1.0 | -/11 -/13  -/0.8

No High. - .02 - - - - - -
Biomed. Oracle 08 .07 | 26/.08  .05/.02 5.2/40 | .30/.26  .06/.08  5.0/3.2
A6 10 | 1806 .08/.02  2.2/3.0 | .29/.36  .14/.15  2.0/2.4
Sup. A1 a2 | 1805 1102 1.6/25 | .16/23 10410 1.6/2.3
Random | 20 - - 1.09 -109 -0 | -/21 -/20  -/1.0

No High.| - .09 - - - - - -
Social  Oracle 25 .20 | 42/23  .13/.04 32/57 | 52/.66  .18/21  2.8/3.1
A7 A8 | 35119 1407 25/27 | 33/37 1415  23/2.4
Sup. A5 .21 | .38/23  .18/.06  2.1/3.8 | 27/39  .11/12  2.4/32

English—Dutch

Random | .17 - - 112 -0 -n2 | -719 -/17 -1

No High.| - .10 - - - - - -
Biomed. Oracle 21 .08 | 21720  .05.08 42/25| 52/.41  .18/18  2.8/2.2
23 .09 | 17/17  .07/08  24/2.1 | 43/38  21/21  2.0/1.8
Sup. A2 .08 | 20421 0609 3.3/23 | 30/25  .A1.11  27/22
Random | .16 - -1.22 /19 -1 | -719 -16 -/

No High.| - .19 - - - - - -
Social ~ Oracle A9 12 | 3339 .07/15  47/2.6 | 54/39  .15/15  3.6/2.6
A5 a3 | 25433 A1/17  22/1.9 | 30426 13/12  2.3/2.1
Sup. A2 .10 | 30736 .08/.17  3.7/21 | 36/23 1010  3.6/2.3

Table C.14 | Highlighting (H) and editing (E) statistics for each domain, modality and
translation direction combination (n = 3 post-editors per combination). Values after
slashes are adjusted by projecting highlights of the specified modality over edits from
No HIGHLIGHT translators to estimate highlight-induced editing biases (Section 9.3.2).
A Random baseline is added by projecting random highlights matching the average
frequency over all modalities for specific domain and translation direction settings.
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ID  Source text Target text Proposed correction ‘ M Score
| Category  Severity |
9-1  Specifying peri- and post- Specificare i fattori peri- e Specificare i fattori peri- e | Readability Minor 90
natal factors in children postnatali nei bambini nati postnatali nei bambini nati
born very preterm (VPT) molto pretermine (VPT) che molto pretermine (VPT, Very
that affect later outcome influenzano il risultato suc- Preterm) che influenzano il
helps to improve long—term cessivo aiuta a migliorare il risultato successivo aiuta a
treatment. trattamento a lungo termine. migliorare il trattamento a
lungo termine.
9-2  To enhance the predictabil-  Migliorare la prevedibilita 100
ity OFS—year cognitive out- del risultato cognitivo a 5
come by perinatal, 2-year anni mediante dati perinatali,
develnpmenral and socio- di sviluppn e socioeconomici
economic data. a2 anni.
9-3  5-year infants born VPT Ineonati di 5 anni nati VPT I neonati di 5 anni nati VPT | Mistranslation ~ Minor 70
were cnmpared to 34 term  sono stati confrontati con 34 sono stati confrontati con 34
controls. nati a termine come con- controlli a termine.
trollo.
0-4 The IQ QFS—year infants I QI dei bambini di 5 Il QIdeibambinidi5 anni nati | Mistranslation ~ Minor 70
born VPT was 10 points anni nati VPT era di 10 VPT era di 10 punti inferiore
lower than that of term punti inferiore a quello dei a quello dei nati a termine e
controls and influenced nati a termine di controllo, influenzato indipendentemente
independently by preterm e influenzato indipendente- dalla nascita pretermine e dallo
birth and SES. mente dalla nascita preter- stato socioeconomico (SES).
mine e dai dati SES.
II QI dei bambini di 5 Il QI dei bambinidi5 anninati | Untranslated ~ Minor
anni nati VPT era di 10 VPT era di 10 punti inferiore
punti inferiore a quello dei a quello dei nati a termine e
nati a termine di controllo, influenzato indipendentemente
e influenzato indipendente-  dalla nascita pretermine e dallo
mente dalla nascita preter- stato socioeconomico (SES).
mine e dai dati SES.
52-1 But with less than 3 months Ma con meno di 3 mesi per  Ma con meno di 3 mesi per | Mistranslation ~ Major 30
to go for that, I feel 'm not  farlo, sento di non essere an-  farlo, sento di non essere an-
ready yet, but having never ~ cora pronto, ma non I'ho mai  cora pronto, e non avendolo
taken it, [ have nothing to preso, non ho nulla con cui  mai fatto, non ho nulla con cui
compare it to besides col- confrontarlo oltre ai consigli confrontarlo oltre ai consigli
leagues’ advice. dei colleghi. dei colleghi.
520 Without knowing What.l Senza sapere quello che so, Se non hanno idea di quanto | Readability Minor 60
know, they can’t know if ~ non possono sapere se sono sappia, non possono sapere se
I'm actually ready yet, but  ancora pronta, ma molti di sono davvero pronta, ma molti
many of them are pushing  loro mi stanno spingendo a  di loro mi stanno spingendo a
me to sign up for it. iscrivermi. iscrivermi.
Senza sapere quello che so, Se non hanno idea di quanto | Mistranslation ~ Minor
NON possono sapere se SONO  sappia, NON POSSONO sapere se
ancora pronta, ma molti di  sono davvero pronta, ma molti
loro mi stanno spingendo a  di loro mi stanno spingendo a
iscrivermi. 1scrivermi.
52-3 I'mclose... justdon’tknow Ci sono quasi... solo che non  Ci sono quasi... solo che non so Addition Major 20
if ’'m 2 months study close. 5o se ce la faro in soli 2 mesi, se ce la faro in soli 2 mesi.
ma p(‘ns() dl P()E(‘rci‘lﬂ ﬁlr(‘.

Table C.15 | QA interface with cropped examples of biomedical and social media texts
with error annotations (Biomedical: post-edited segments with No HigHriGHT; Social
media: MT outputs).
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Figure C.5 | Top: Post-editing rate across highlight modalities, domains and directions.

Bottom: Proportion of edits in highlighted spans across highlight modalities.

*kk

= p < 0.001, ™ = p < 0.01, * = p < 0.05, ns = not significant with Bonferroni

correction.
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Figure C.6 | Post-editing agreement across various modalities Section 9.3.2. Results are
averaged across all translator pairs for the two modalities (n = 3 intra-modality, n = 9
inter-modality for every language) and all segments.
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Figure C.7 | ESA ratings for MT outputs and post-edits across domains and translation
directions.



312 C. Interpretability in Human Translation Workflows

[ Accuracy [ Linguistic [l Style

Biomedical Social Media
754 g
50 £
N I I :
o
. = =ml:
S o
<}
© m
754 ‘g
50 g
o
N I I Il 5
(o]
-0
0.

g‘\o\?’&? o o o\&? S
\?\ o Px® V\\?\\ o T ®

Figure C.8 | Distribution of MQM error categories for MT and post-edits across
highlight modalities for the two translation directions and domains of QE4PE.
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Figure C.9 | Editing proportion, measured by word error rate between MT and post-
edited texts, with respect to post-editor progression. Values are medians across all
post-editors.
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Figure C.10 | Segment-level post-editing time with respect to post-editor progression.
Values are medians across all annotators. Light gray area is min-max values, dark gray
represents 25%-75% quantiles. The annotators do not became considerably faster with
the task progression, likely due to the simplicity of the task and the high post-editing
proficiency of professional post-editors. The high variability in editing times motivates
the careful group assignments performed using Pre task edit logs.
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C.3 Unsupervised MT Error Detection and Human Disagreement

C.3.1 Full Results

| QE4PE;; QE4PE;2 QE4PE;s QE4PE;s QE4PE.s QE4PE;s QE4PE..g
| AP F1* |AP F1* |AP F1* |AP F1* |AP F1* |AP F1* || AP F1*
Random Baseline | .08 .14 |.15 26 |.06 .12 |.11 .19 [.22 36 |.18 30 ||.13 .23

Surprisal A1 .20 .21 31 |11 17 |16 .25 | .30 .40 |25 .35 || .19 .28
Out. Entropy A2 18 | .22 30 | .10 16 |17 .24 |30 39 | .26 .34 || .19 27
Surprisal MCD 4 | .12 .20 |22 .32 |11 .17 |16 26 |.30 .41 |26 .36 |[.19 .29
Surprisal MCD s | .13 21 | .26 .33 |.12 .20 |.19 .27 |.31 .40 |.29 .36 ||.22 .30
LL Surprisal geer A1 .19 |21 32 |11 16 |16 25 |29 40 |26 .35 || .19 .28
LL KL-DiV g5y 09 16 |19 28 | .08 .14 |13 21 | .25 .37 | .22 31 (| .16 .25
LL Pred. Depth 09 16 | .18 .28 | .07 13 |14 21 | .25 37 | .21 31 (|.16 .24
Attn. Entropy ave A1 16 |17 27 |12 17 |11 19 |23 36 |19 31 || .15 .24
Attn. Entropy wax | .09 .14 | .15 .26 | .10 .18 | .09 .19 | .20 .36 |.16 .30 || .13 .24

Method

BLoob s .08 .14 | .16 26 |.06 .12 | .11 .19 | .23 36 |.18 .30 || .14 .23
XCOMET-XL A1 .24 .22 35 |10 .20 |16 .30 | .27 .35 | .23 .34 || .18 .30
XCOMET-XL cone 20 .25 | .30 .36 |14 21 | .25 .31 | .37 .40 |31 .36 || .26 .32
XCOMET-XXL A300.27 |22 32 .10 .24 |17 .31 .28 .32 | .23 .31 (.19 .30

XCOMET-XXL conr A9 .27 | .31 .36 | .17 .24 | .26 .32 | .37 .41 | .33 .39 || .27 .33

Human Editors yuy | .17 .33 |26 .38 | .10 21 |.16 26 | .25 .36 |.23 .30 [].19 .31
Human Editors y6 | .20 38 | .29 43 | .14 30 | .22 .39 |.32 .38 |.30 .40 [|.25 .39
Human Editors yax | .24 43 | 31 47 |20 41 |24 43 |37 .50 |.33 .50 || .28 .46

Table C.16 | WQE metrics’ performance for predicting error spans from the six edit
sets over NLLB 3.3B translations in the En—It QE4PE dataset. Best unsupervised and
overall best metric results are highlighted.
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| QE4PE;; QE4PE;> QE4PE;s QE4PE;; QE4PEy5 QE4PEis QE4PE..g
| AP F1* |AP F1* |AP F1* |AP F1* |AP F1* |AP F1* || AP F1*
Random Baseline | .07 .14 | .34 51 |22 36 |.19 32 |.03 24 |22 36 .20 .32

Method

Surprisal A2 19 |41 51 |30 39 |29 37 |21 30 |31 41|27 36
Out. Entropy A1 18 |41 51 |31 37 |29 36 |20 27 |31 .39 || .27 .35
Surprisal e ave A2 19 |42 52 |31 40 |30 40 |21 .30 |31 42 || .28 .37
Surprisal wep van 3021 145 .53 1 .36 AL |34 40 | 24 32 | .36 42 || 31 38
LL Surprisal yeer | .12 .19 | .42 .53 | .30 .40 |29 .38 | .21 .30 .31 41 (|27 .37
LL KL-DiV pesr 09 15 |39 52 |28 37 |25 34 |17 26 |29 38 (|25 .34

LL Pred. Depth 09 16 |37 52 | .26 37 |.24 33 |17 .25 | .27 .38 (.23 .33
Attn. Entropy ave 09 15 |37 51 |22 36 |.20 .32 | .13 .24 | .23 37 ||.21 .32
Attn. Entropy yax | .09 .15 | .35 .51 | .22 36 | .18 .32 | .12 .24 | .21 .37 ||.19 .32

BLoob g 07 13 |35 51 | .22 36 | .19 .32 | .14 .24 | .23 .36 ||.20 .32
XCOMET-XL A30.27 |39 39 |31 44 | 280 32 1 .20 .35 | .31 44 || .27 .38
XCOMET-XL cong 24 31 |47 53 | .43 45 | .40 43 | .29 .36 | .43 .46 || 38 .42
XCOMET-XXL A3 028 |39 29 |30 35 | .26 .35 |19 31 |30 .35 || .26 .32

XCOMET-XXL conp 24 30 | .48 .53 | .43 45 | .40 42 |31 35 | .43 45 || .38 .42

Human Editors i | .16 .29 | 43 51 | .34 45 | .33 47 | 26 42 | .36 .46 ||.32 43
Human Editors ae | .17 .33 | 44 51 | .34 45 |33 47 |26 42 | .36 .46 ||.32 43
Human Editors yax | .19 .36 | 46 .51 |36 .51 | .37 .53 |.32 51 | .40 .53 (.35 .49

Table C.17 | WQE metrics’ performance for predicting error spans from the six edit
sets over NLLB 3.3B translations in the En—NI QE4PE dataset. Best unsupervised and
overall best metric results are highlighted.

Italian  Dutch  Arabic Turkish Vietnamese Ukrainian Average

Method

| AP F1*|AP F1* |AP F1*|AP F1*|AP F1* |AP F1* ||AP F1*
Random Baseline | 25 .40 [ .28 .43 |33 49 .34 50 |.35 52 |48 .65 |[.34 .50
Surprisal 34 45[.36 46|42 51[.43 54|46 55 |55 .65 |[.43 53
Out. Entropy ~ |.37 .43 .30 45|45 50 |.49 52|48 54 |.58 .65 ||.46 51
Surprisal yepwe |34 45 |37 A7 | 43 52| .44 54|46 55 |56 .65 |[.43 53
SurprisalMc.)w Q '476 ﬂ ﬂ ﬂ & ﬁ .55 ﬁ & .61 ﬁ ﬂ ﬁ
LL Surprisal e |33 44 | .36 .45 | 41 51| .44 54|44 55 |55 .66 |[.42 53
LLKL-Div e |34 42|37 45 |41 51|44 52 (.44 52 |56 .65 || .43 51
LL Pred. Depth | .30 .42 |.32 .44 [39 50 |.40 52 (.39 53 |54 .66 [|.39 .51
Attn. Entropy we |28 41|30 43 |35 49|37 51 )40 52 |50 .65 |[.37 .50
Attn. Entropy | 25 41 .26 .43 | 34 49 |34 50 |35 52 |47 .65 |[.34 50
BLOOD uscr 26 40 |28 43|35 52|35 50 .36 52 |49 .65 |[.35 51
XCOMET-XL 3403937 44|41 47|44 50|42 44 |56 44 || 42 45
XCOMET-XL conr | 46 .47 | 49 .50 | .51 .53 |.58 .56 |.53 .55 |.68 .67 || .54 .55
XCOMET-XXL 34 36|35 35|43 47|45 48|43 42 |57 41 |[ 43 42
XCOMET-XXL cone | 48 .49 | .50 .50 | .55 .54 |.58 .56 |.56 .57 |.70 .67 || .56 .55

Table C.18 | WQE metrics’ performance for predicting error spans from multiple edit
sets (one per language) over mBART-50 translations across the six topologically diverse
target languages of DIVEMT.
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Method En—Ja En— Zh En— Hi Cs— Uk En— Cs En— Ru Average

| AP F1* | AP F1*

AP F1*|AP F1* |AP F1* |AP F1* || AP F1*

Random Baseline | .02 .03 | .03 .07 | .03 .07].05 .09 |.06 .11[.08 .16 |[.05 .09

Surprisal .03 .07 ].05 .09[.05 .09].14 20|.10 .16 |.13 .19|[.08 .13
Out. Entropy | .03 .08 .06 .11 .06 .10 .20 .27 |.12 .18 |.14 .20 .10 .16
LL Surprisal s | .03 .07 |.05 .09 |.05 .09 |.14 .20 |.10 .16 |.13 .19 || .08 .13
LL KL-Div s |02 .05 |.04 .07 |.04 .08 .10 .17 |.09 .15|.12 .19 || .07 .12
LL Pred. Depth |.02 .05 |.04 .08 |.04 .09 |.09 .18 |.08 .14 |.11 .18 |[.06 .12
Aten. Entropy we |02 .03 [.03 .07 [.03 .07 |.03 .09 (.05 .11 |.07 .16 || .04 .09
Attn. Entropy wa | 01 .03 [ .03 .07 [.03 .07 |.03 .09 .05 .11 |.08 .16 || .04 .09

XCOMET-XL .04 09).05 .11 ].06 .12|.13 .28 |.11 .24 |.16 .32 .09 .19
XCOMET-XL conr .08 .14|.10 .16 |.10 .19 |.18 .30 |.19 .29 |.24 32| .15 .23
XCOMET-XXL .04 11).06 .13 |.05 .11 |.13 .28 |.11 .24 |.16 .33 .09 .20

XCOMET-XXL cone | .07 .15 .09 .19 |.09 .17 |.19 .29 |.22 .30 |.28 .33 || .16 .24

Table C.19 | WQE metrics’ performance for predicting error spans from the ESA
annotations (one set per language) over Aya23-35B outputs for the WMT24 dataset.
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Italian T1 Italian T2 Italian T3
___ XComet XXLConf. ~__ XComet XL ___ XComet XXLConf. ~ _ XComet XL XComet XXL Conf. XComet XL
(AP = 0.33) (AP =0.23) (AP =0.37) (AP = 0.27) T (AP=0.26) T (AP=10.16)
____ XComet XL Conf. ____ Surprisal MCD Var XComet XL Conf. ____ Surprisal MCD Var XComet XL Conf. Surprisal MCD Var
(AP =0.31) (AP =0.29) ~— (AP=0.36) (AP'=0.31) ~ (AP=0.25) ~ (AP=0.19)
____ XComet XXL __. Chance level XComet XXL Chance level XComet XXL __. Chance level
(AP =0.23) (AP = 0.18) T (AP=10.28) TT (AP=0.22) ~ (AP=0.17) (AP = 0.11)
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____ XComet XL Conf. ____ Surprisal MCD Var XComet XL Conf. Surprisal MCD Var XComet XL Conf. ____ Surprisal MCD Var
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Figure C.11 | Precision-recall curves for xcoMET metrics and Surprisal MCDy,, for all
annotators of QE4PE En—1t.
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Dutch T1 Dutch T2 Dutch T3
____ XComet XXLConf. ~__ XComet XL XComet XXL Conf. XComet XL ___ XComet XXL Conf. ~ ___ XComet XL
(AP = 0.43) (AP =0.31) — (AP=10.31) T (AP =10.20) (AP = 0.40) (AP = 0.28)
___ XCometXLConf. ~ __ Surprisal MCD Var XComet XL Conf. Surprisal MCD Var XComet XL Conf. Surprisal MCD Var
(AP = 0.43) (AP =0.36) T (AP=10.29) T (AP =0.24) " (AP =0.40) ~ (AP=10.34)
____ XComet XXL __. Chance level XComet XXL Chance level XComet XXL Chance level
(AP = 0.30) (AP =0.22) T (AP=0.19) T (AP=10.13) T (AP=027) T (AP=0.19)
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Figure C.12 | Precision-recall curves for xcoMeT metrics and Surprisal MCDy,, for all
annotators of QE4PE En—NL
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English - Arabic English - Italian English - Dutch
____ XComet XXL Conf. ~ _ XComet XL ___ XComet XXL Conf. ~__ XComet XL XComet XXL Conf. XComet XL
(AP = 0.55) (AP = 0.41) (AP = 0.48) (AP = 0.34) ~ (AP = 0.50) T (AP =0.37)
____ XComet XL Conf. ____ Surprisal MCD Var ___ XComet XL Conf. ____ Surprisal MCD Var XComet XL Conf. Surprisal MCD Var
(AP = 0.51) (AP'= 0.47) (AP = 0.46) (AP'= 0.39) T (AP =10.49) T (AP =0.41)
___ XComet XXL _ .. Chance level ____ XComet XXL __. Chance level ____ XComet XXL ——. Chance level
(AP = 0.43) (AP = 0.33) (AP = 0.34) (AP = 0.25) (AP = 0.35) (AP = 0.27)
1.0
0.8 i
_5 0.6 i
[}
w —
§ N "\\
a 0.44 J
0.2 1 i
0.0 T T T T - - : - - - -
English - Turkish English - Ukrainian English - Viethamese
XComet XXL Conf. XComet XL XComet XXL Conf. XComet XL ____ XComet XXL Conf. ~ __ XComet XL
(AP =0.56) T (AP=042) T (AP=0.70) T (AP =0.56) (AP = 0.58) (AP =0.44)
XComet XL Conf. Surprisal MCD Var XComet XL Conf. Surprisal MCD Var ___ XComet XL Conf. ~ ___ Surprisal MCD Var
~ (AP=053) T (AP=0.48) " (AP =0.68) T (AP=061) (AP = 0.58) (AP = 0.49)
XComet XXL Chance level XComet XXL Chance level ____ XComet XXL _ . Chance level
T (AP=0.43) 7" (AP =10.35) T (AP=0.57) = (AP =0.48) (AP = 0.45) (AP = 0.34)
1.0
0.8 1 i
- N
0.6 1P~ b 1~ N
S
o o~ )
§ -
a 0.4 B 4
0.2 1 b b
0.0 T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 1000 02 04 06 08 10
Recall Recall Recall

Figure C.13 | Precision-recall curves for xcomeT metrics and Surprisal MCDy,, on all
DivEMT languages.
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English - Japanese English - Chinese English - Hindi
___ XComet XXL Conf. ~ ___ XComet XL XComet XXL Conf. XComet XL XComet XXL Conf. XComet XL
(AP = 0.09) (AP = 0.05) " (AP =0.07) 7 (AP =0.04) " (AP =0.09) 7 (AP =0.06)
____ XComet XL Conf. ___ Out. Entropy ____ XComet XL Conf. ___ Out. Entropy ____ XComet XL Conf. ___ Out. Entropy
(AP = 0.10) (AP = 0.06) (AP =0.08) (AP =0.03) (AP = 0.10) (AP = 0.06)
____ XComet XXL __. Chance level ____ XComet XXL __. Chance level XComet XXL Chance level
(AP = 0.06) (AP =0.03) (AP = 0.04) (AP = 0.01) " (AP =0.05) ~T7 (AP =0.03)
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Summary

Neural language models have revolutionized the field of natural language processing,
quickly becoming essential tools for a wide range of practical applications. Recent
advances in interpretability research offered valuable insights into the inner workings
of these systems, but often failed to translate into downstream improvements for users
in real-world settings. This dissertation investigates the end-to-end development of
interpretability methods to improve the trustworthiness and controllability of neural
machine translation systems, from conception to experimentation with end users. Its
findings address fundamental questions about how language models leverage contextual
information, how their generation processes can be steered for personalization, and
how interpretability insights can enhance professional translation practices.

The thesis work is organized into three interconnected parts. Part I develops foun-
dational tools and methods for understanding how language models use contextual
information during generation. We begin by introducing Inseq, an open-source toolkit
for interactive analysis of language model behavior, showcasing its use for gender
bias detection in machine translation and activation attribution using gradient-based
methods. We then design PECORE, a framework using contrastive input attribution
to quantify how language models exploit contextual information, and demonstrate
its effectiveness in detecting context influence in context-aware machine translation
systems. Finally, we extend PECORE to retrieval-augmented generation, using model
internals to produce faithful, efficient and high-quality citations for open-book question
answering.

Part II shifts the focus of our investigation from analysis to intervention, exploring
methods for controlling translation outputs through prompting-based and steering-
based approaches. We first present Ramp, a retrieval-augmented prompting technique
exploiting relevant examples and style labels for attribute-controlled translation. We
then move to the more challenging domain of literary translation, highlighting the
effectiveness of steering interventions in conditioning models’ generation by surgically
altering their internal representations. In particular, we show that interpretable concepts
extracted by trained sparse autoencoders can be used to mimic personal translation
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styles from human professional translators, and that successful prompting and steering
approaches converge on similar mechanistic solutions.

Finally, Part III explores how insights from model internals can inform human editors
in professional translation workflows. We begin by conducting a post-editing user
study spanning six typologically diverse languages (DIVEMT), showing that trans-
lation productivity gains vary dramatically across language pairs, with typological
similarity being more influential than traditional quality metrics. Our second study,
QEA4PE, investigates how word-level error highlights impact the productivity of pro-
fessional post-editors and the quality of their translations, including both supervised
and interpretability-based approaches. We conclude with a broad evaluation of unsu-
pervised quality estimation methods, showing that error detection approaches based on
model internals can outperform supervised baselines, and highlighting the importance
of calibration and multiple annotations to account for human label variation.

Overall, this dissertation advances the field of machine translation interpretability by
developing accessible tools and methods for understanding context usage, enabling
fine-grained control over translation outputs, and establishing empirical evidence for the
use of model internals in professional translation workflows. These contributions, taken
together, lay the groundwork for the next generation of trustworthy, controllable, and
user-centered translation systems.



Samenvatting

Neurale taalmodellen hebben voor een revolutie gezorgd in het vakgebied van de
natuurlijke taalverwerking en zijn snel uitgegroeid tot essentiéle instrumenten voor
een breed scala aan praktische toepassingen. Recente vorderingen in het onderzoek
naar interpreteerbaarheid boden waardevolle inzichten in de interne werking van deze
systemen, maar slaagden er vaak niet in zich te vertalen naar verbeteringen voor ge-
bruikers in reéle scenario’s. Dit proefschrift onderzoekt de ontwikkeling van methoden,
gebaseerd op interpreteerbaarheidsonderzoek, om de betrouwbaarheid en bestuur-
baarheid van neurale machinevertaalsystemen te verbeteren, op een end-to-end-manier:
van concept tot en met experimenten met eindgebruikers. De bevindingen gaan in op
fundamentele vragen over hoe taalmodellen contextuele informatie benutten, hoe hun
generatieprocessen kunnen worden gestuurd voor personalisatie, en hoe inzichten uit
interpreteerbaarheidsonderzoek de professionele vertaalpraktijk kunnen verbeteren.

Het proefschrift is opgebouwd in drie onderling verbonden delen. Deel I ontwikkelt
fundamentele instrumenten en methoden om te begrijpen hoe taalmodellen contextuele
informatie gebruiken tijdens het genereren van tekst. Om te beginnen introduceren
we Inseq, een open-source toolkit voor interactieve analyse van taalmodelgedrag, en
laten we zien hoe het gebruikt kan worden voor het detecteren van genderbias in
machinevertaling en voor activatie-attributie met gradiént-gebaseerde methoden. Ver-
volgens ontwerpen we PECORE, een raamwerk dat contrastieve inputattributie gebruike
om te kwantificeren hoe taalmodellen contextuele informatie benutten, en we tonen
de effectiviteit hiervan aan bij het detecteren van contextinvloed in contextbewuste
machinevertaalsystemen. Tot slot breiden we PECORE uit naar ’retrieval-augmented
generation’ (RAG), waarbij we de interne werking van het model gebruiken om be-
trouwbare, efficiénte en hoogwaardige citaten te produceren voor het beantwoorden
van openboekvragen.

Deel II verschuift de focus van ons onderzoek van analyse naar interventie, en verkent
methoden om de vertaaloutput te beheersen met technieken gebaseerd op prompting
en sturing. We presenteren eerst Ramp, een ’retrieval-augmented prompting’-techniek
die relevante voorbeelden en stijl-labels benut voor attribuut-gestuurde vertaling.
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Vervolgens verplaatsen we ons naar het meer uitdagende domein van de literaire
vertaling, waarbij we de effectiviteit benadrukken van sturingsinterventies bij het
conditioneren van de modelgeneratie door hun interne representaties chirurgisch aan te
passen. In het bijzonder tonen we aan dat interpreteerbare concepten, geéxtraheerd door
getrainde sparse autoencoders, kunnen worden gebruikt om persoonlijke vertaalstijlen
van menselijke professionele vertalers na te bootsen, en dat succesvolle prompting- en
sturing-benaderingen convergeren naar vergelijkbare mechanistische oplossingen.

Ten slotte onderzoekt Deel IIT hoe inzichten uit de interne werking van modellen
menselijke post-editors kunnen informeren binnen professionele vertaalworkflows. We
beginnen met het uitvoeren van een gebruikersstudie over post-editing in zes typolo-
gisch diverse talen omvat (DIvEMT). Deze studie toont aan dat de productiviteitswinst
bij vertalen dramatisch varieert tussen taalparen, waarbij typologische afstand invloedri-
jker is dan traditionele kwaliteitsmetrieken. Onze tweede studie, QE4PE, onderzoekt
hoe foutmarkeringen op woordniveau de productiviteit van professionele post-editors
en de kwaliteit van hun vertalingen beinvloeden, waarbij zowel gesuperviseerde als op
interpreteerbaarheid gebaseerde benaderingen worden meegenomen. We sluiten af met
een brede evaluatie van niet-gesuperviseerde methoden voor kwaliteitsbeoordeling,
waaruit blijkt dat foutdetectiebenaderingen gebaseerd op interpreteerbaarheid beter
kunnen presteren dan gesuperviseerde baselines. We benadrukken tevens het belang van
kalibratie en meervoudige annotaties om rekening te houden met menselijke variatie in

labeling.

In het geheel genomen levert dit proefschrift een bijdrage aan het vakgebied van de
interpreteerbaarheid van machinevertaling door toegankelijke tools en methoden te
ontwikkelen voor het begrijpen van contextgebruik, het mogelijk maken van fijnmazige
beheersing van de vertaaloutput, en het leveren van empirisch bewijs voor het gebruik
van interpreteerbaarheid in professionele vertaalworkflows. Deze bijdragen leggen
samen het fundament voor de volgende generatie van betrouwbare, beheersbare en
gebruikersgerichte vertaalsystemen.
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