Presenting my work on studying different metrics of linguistic complexity and how they correlate with linguistic phenomena and learned representations in neural language models
This paper investigates the relationship between two complementary perspectives in the human assessment of sentence complexity and how they are modeled in a neural language model (NLM), highlighting how linguistic information encoded in representations changes when the model learns to predict complexity.
This thesis presents a model-driven study of multiple phenomena associated with linguistic complexity, and how those get encoded by neural language models' learned representations.