Natural Language Processing | Gabriele Sarti

Natural Language Processing

Post-hoc Interpretability for Neural Language Models

In recent years, Transformer-based language models have achieved remarkable progress in most language generation and understanding tasks. However, the internal computations of these models are hardly interpretable due to their highly nonlinear structure, hindering their usage for mission-critical applications requiring trustworthiness and transparency guarantees. This presentation will introduce interpretability methods used for tracing the predictions of language models back to their inputs and discuss how these can be used to gain insights into model biases and behaviors. Throughout the presentation, several concrete examples of language model attributions will be presented using the Inseq interpretability library.

Inseq: An Interpretability Toolkit for Sequence Generation Models

This talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated with examples introducing state-of-the-art approaches for interpreting language models such as contrastive attribution, tuned lenses and causal mediation analysis.

Advanced XAI Techniques and Inseq: An Interpretability Toolkit for Sequence Generation Models

This talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated with examples introducing state-of-the-art approaches for interpreting language models such as contrastive attribution, tuned lenses and causal mediation analysis.

Introducing Inseq: An Interpretability Toolkit for Sequence Generation Models

After motivating the usage of interpretability methods in NLP, this talk introduces the Inseq toolkit for interpreting sequence generation models. The usage of Inseq is illustrated on two case studies related to gender bias in machine translation and locating factual knowledge withing GPT-2 representations.

Are Character-level Translations Worth the Wait? Comparing ByT5 and mT5 for Machine Translation

We analyze input contributions of char-level MT models and show how they modulate word and character-level information.

Inseq: An Interpretability Toolkit for Sequence Generation Models

We present Inseq, a Python library to democratize access to interpretability analyses of sequence generation models.

Towards User-centric Interpretability of Machine Translation Models

With the astounding advances of artificial intelligence in recent years, interpretability research has emerged as a fundamental effort to ensure the development of robust and transparent AI systems aligned with human needs. This talk will focus on user-centric interpretability applications aimed at improving our understanding of machine translation systems, with the ultimate goal of improving post-editing productivity and enjoyability.

DivEMT: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages

DivEMT is a publicly available post-editing study of Neural Machine Translation over a typologically diverse set of target languages.

Towards User-centric Interpretability of NLP Models

With the astounding advances of artificial intelligence in recent years, the field of interpretability research has emerged as a fundamental effort to ensure the development of robust AI systems aligned with human values. In this talk, two perspectives on AI interpretability will be presented alongside two case studies in natural language processing. The first study leverages behavioral data and probing tasks to study the perception and encoding of linguistic complexity in humans and language models. The second introduces a user-centric interpretability perspective for neural machine translation to improve post-editing productivity and enjoyability. The need for such application-driven approaches will be emphasized in light of current challenges in faithfully evaluating advances in this field of study.

Empowering Human Translators via Interpretable Interactive Neural Machine Translation

Discussing the potential applications of interpretability research to the field of neural machine translation.